### MOMENT Synergies with Other Projects

Jingyu Tang Institute of High Energy Physics, CAS NuFact2015, Rio de Janeiro, Brazil, Aug. 10-15, 2015

## Main Topics

- MOMENT concept
- Proton driver technology synergy with other projects
- Target technology synergy with other projects
- Neutrino beamline technology synergy with other projects
- Detector technology synergy with other projects
- Summary

#### **MOMENT Concept**

## **MOMENT Concept**

- MOMENT: A muon-decay medium baseline neutrino beam facility
- MOMENT was launched in 2013 as the third phase of neutrino experiments in China
  - Neutrino experiments at Daya Bay continues data-taking
  - Jiangmen (JUNO, or DYB-II) has started civil construction
- A dedicated machine to measure CP phase, if other experiments (such as LBNF/DUNE, HyperK) will have not completed the task
- As a driving force to attract researchers from China as well international collaborators to work on neutrino experiments based on accelerators

## A concept to exploit high-flux mediumenergy muon-decay neutrinos

- Using a CW proton linac as the proton driver
  - Based on the China-ADS linac
  - 15 MW in beam power
- Fluidized target in high-field SC solenoid
  - Granular tungsten or mercury jet
  - Collection of pions and muons of both charges
- Neutrino beam from pure  $\mu$ + or  $\mu$  decays
  - Medium energy (250 MeV) for medium-baseline experiment
  - From long decay channel instead of decay rings for NF and nuSTORM

#### $\mu$ Decay channel - a $\pi^0$ -free neutrino beam line

- Neutrino energy: ~ 300 MeV → baseline = 150 km
- Although we loose some statistics due to lower cross section, but we gain by being background free from  $\pi^0$



#### **Schematic for MOMENT**



Proton driver technology synergy with other projects

## MOMENT proton driver: a CW superconducting linac

- A CW proton SC linac can provide the highest beam power, and selected as the proton driver for MOMENT
- China-ADS project and MYRRHA are developing such a CW proton linac. PIP-II (PIXE) is developing CW RF linac but with lower beam duty.
- If China-ADS program goes well, the linac could be also used as the proton driver for MOMENT in 2030's.
  - Proton beam: 1.5 GeV, 10 mA (15 MW)
  - Alternate: extending energy to 2.0 GeV

#### Design scheme for the C-ADS linac

![](_page_9_Figure_1.jpeg)

#### R&D efforts on ADS linac at IHEP and IMP

- IMP completed the commissioning test of a 5 MeV front-end (10 mA, 162.5 MHz, 2.1 MeV RFQ in CW mode, a cryomodule HWR in pulsed mode)
- IHEP is testing another scheme (3.2 MeV RFQ, a cryomodule Spoke, 10 mA, 325 MHz)
- Prototyping on both low- $\beta$  and medium- $\beta$  cavities

![](_page_10_Picture_4.jpeg)

![](_page_10_Picture_5.jpeg)

![](_page_10_Picture_6.jpeg)

![](_page_10_Picture_7.jpeg)

![](_page_10_Picture_8.jpeg)

- High power proton accelerators are mandatory to neutrino beam facilities
- MOMENT proton driver shares technologies with the other proposed neutrino beams, such as Neutrino Factory, Project-X (now PIP-II) and ESSnuSB
  - Development of superconducting cavities (low- $\beta$ , medium- $\beta$ , high- $\beta$ ) and the high duty factor RF equipment
  - Beam loss control in high power proton linacs
  - Interface with target station

![](_page_11_Figure_5.jpeg)

![](_page_12_Figure_0.jpeg)

#### Comparison of proton drivers

|                    | Beam<br>power<br>(MW) | Linac<br>Energy<br>(GeV) | RF duty<br>factor<br>(%) | Peak<br>current<br>(mA) | SC<br>cavity<br>types |
|--------------------|-----------------------|--------------------------|--------------------------|-------------------------|-----------------------|
| MOMENT             | 15                    | 1.5 (~2.5)               | 100                      | 10                      | 5                     |
| Neutrino Factory   | 4                     | 5 (SPL)                  | 4                        | 20                      | 2                     |
| Project-X (PIP-II) | 3 (0.2)               | 3 (0.8)                  | 100 (10)                 | 5 (2)                   | 6(5)                  |
| ESSnuSB            | 5                     | 2                        | 4                        | 62.5                    | 3                     |

(Project-X has also a pulsed linac section of 3-8 GeV)

Target technology synergy with other projects

#### **MOMENT Target Station**

- Baseline design: Mercury jet target (similar to NF design, MERIT) and high-field superconducting solenoids
  - Higher beam power: heat load, radioactivity
  - On the other hand, easier to some extent due to CW proton beam (no shock-wave problem)
- More interests in developing fluidized granular target in collaborating with C-ADS target team, and also waiting for study result with fluidized tungsten-powder target by NF collaboration

![](_page_14_Figure_5.jpeg)

**Normal Pressure Helium environment** 

#### High-field superconducting solenoids

- Very large apertures due to collection of secondary /tertiary beams and space for inner shielding
  - Based on Nb<sub>3</sub>Sn superconducting conductors, CICC (Cable-in-Conduit Conductor) coil (ITER)
  - HTS coils are also under consideration
  - High-field magnet R&D efforts at IHEP (incorporated with SPPC)

![](_page_15_Picture_5.jpeg)

![](_page_15_Picture_6.jpeg)

- Different field levels have been studied: 7/10/14 T
  Evident advantage on pion collection with higher field
- Relatively short tapering section: <5 m (Vassilopoulos' talk)</li>
- High radiation dose level is considered not a big issue here (compared with ITER case)(both Nb<sub>3</sub>Sn and HTS conductors are radiation resistant, problems are with electrical insulation)

![](_page_16_Figure_3.jpeg)

## Pion production and collection

- Pion production rate: 0.10 pion/proton (1.5 GeV, 300 mm Hg)
- Collection efficiencies of forward/total pions: 82% / 58% (@14 T)

- Distributions in (X-X')/(Y-Y') at end of pion decay channel (from upper down: 7/10/14T)
- Higher field increases the core density significantly (favorable)

![](_page_17_Figure_5.jpeg)

![](_page_18_Figure_0.jpeg)

- There are two parts in the spent protons:
  - Scattered protons from the side of the thin mercury jet and the pass-thru protons from the jet which have higher energy (4.7 MW with 30 cm target)
  - From nuclear reactions, lower energy (1.8 MW with 30 cm target)
- We must find ways to deal with the spent protons, either collimated or separating from the π/μ beam or transporting to the final dump.
  - Very difficult due to high beam power and large moment range and emittance

- High power target station is a technically challenging issue, and even more challenging when high magnetic-field is required.
  - Huge heat deposit in target (cooling, shocking wave)
  - Very high irradiation level (protection, material lifetime, electrical insulation)
  - Very high electromagnetic force, space limitation
  - Interface with primary and secondary beamlines
- Conventionally, carbon target inside a magnetic horn is used (very short pulse, up to 2 MW, low repetition rate)
- New type of neutrino beams (NF and MOMENT) uses high-repetition or CW proton beams, and higher power
  - Mercury jet target (now preferable fluidized tungsten target)
  - Superconducting solenoids for  $\pi$  capture and focusing
  - Extremely challenging

## Synergy efforts

- Precise simulations on  $\pi$  production yield, material and proton energy
  - MARS, GEANT4, MCNP, FLUKA: not consistent
- Study on magnetic field taper
- Design and R&D on fluidized tungsten target (NF and MOMENT)
- Design and R&D on high-field superconducting solenoids (NF and MOMENT)
- Study on cooling and shielding methods in MW targets
- Interface issues with primary and secondary beamlines (windows, shielding, dump)
- Spent protons

## Comparison of target stations

|                  | Beam power<br>(MW) | Proton<br>energy (GeV) | Target                   | Magnetic<br>field           |
|------------------|--------------------|------------------------|--------------------------|-----------------------------|
| MOMENT           | 15                 | 1.5 (~2.5)             | Granular W<br>or Hg jet  | SC solenoids                |
| Neutrino Factory | 4                  | 5 (SPL)                | Fluidized W<br>or Hg jet | SC solenoids<br>+ RT insert |
| LBNF             | 2                  | 120                    | Carbon                   | Horns                       |
| ESSnuSB          | 5                  | 2                      | 4 * Carbon               | Horns                       |

![](_page_21_Picture_2.jpeg)

Neutrino beamline technology synergy with other projects

## **MOMENT Secondary beamline**

- Transporting both pions and muons
- A straight section in SC solenoids of about 100 m to match the SC solenoids at the target, and for the pions to decay into muons
  - Adiabatic field transition (tapering section )
  - Extraction of scattered protons
  - Very large emittance and momentum spread
  - Longer section for energetic pions to decay
- Similar beam rigidity assures that pions and muons can be transported in the same focusing channel
  - Momentum and emittance of pions most preserved in muons

![](_page_23_Figure_9.jpeg)

#### More about the pion decay channel

- SC solenoids form FOFO lattice (stop-band at certain energy)
- Very large acceptance for channels
- About 0.0052 μ+/proton for about 50 πmm-rad at entrance of muon decay channel

![](_page_24_Figure_4.jpeg)

|                        | muon/proton | Portion (%) |
|------------------------|-------------|-------------|
| No limit on emittance  | 9.48E-03    | 100         |
| Emittance: 100 πmm-rad | 8.04E-03    | 85          |
| Emittance: 80 πmm-rad  | 7.31E-03    | 77          |
| Emittance: 50 πmm-rad  | 5.22E-03    | 55          |

Emittance limit in both (X-X') and (Y-Y')

#### Charge selection

- A selection section to select π+/μ+ from π-/μ-, as either μ+ beam or μ- beam is used for producing the required neutrinos
  - Reverse the fields when changing from  $\mu \text{+}$  to  $\mu \text{-}$
  - Also for removing very energetic pions who still survive
  - Very difficult due to extremely large beam emittance (T/L)
- Two schemes: based on 3 SC dipoles with strong gradient (or FFAG), and bent SC solenoids

![](_page_25_Figure_6.jpeg)

#### Muon transport and decay - Muon decay channel

- A long decay channel of about 600 m is designed for production of neutrinos
  - About 35% (centered momentum: ~300 MeV/c)
- Important to have smaller divergent angle
  - Neutrino energy spectrum at detector related to the angle
  - Modest beam emittance and large aperture
  - Adiabatic matching from 3.7 T in the bending section to
    1.0 T in the decay section

| Aperture/Field | Acceptance (πmm-rad)                       |
|----------------|--------------------------------------------|
|                | 100 (w 280 w' 257)                         |
| φ600, 3.7 Ι    | 100(x: 280, x: 357)                        |
| φ800, 1.0 T    | 65 (x: 380 <i>,</i> x': <mark>171</mark> ) |

## Estimate of neutrino flux

- POT (5000 h):  $1.125 \times 10^{24}$  proton/year
- Muon yield:  $1.62 \times 10^{-2} \mu/proton$
- Total neutrino yield:  $4.8 \times 10^{-3} \text{ v/proton}$  (in pair)

 $5.4 \times 10^{21}$  v/year (in pair)

(NF:  $1.1 \times 10^{21}$  v/year)

• Neutrino flux at detector: dependent on the distance  $4.7 \times 10^{11} \text{ v/m}^2/\text{year} (@150 \text{ km})_2$ 

![](_page_27_Figure_7.jpeg)

# Challenges and synergy efforts in neutrino beamlines

- Charge selection of  $\pi + /\pi$  and  $\mu + /\mu$  [NF]
  - Very large emittance/momentum range
- Dumping both protons and secondary particles [All]
  Mixed beam, high power
- Manipulation in phase space [NF, nuSTORM]
  - Adiabatic conversion of transverse momentum into longitudinal
  - Bunching rotation
  - Emittance cooling

Detector technology synergy with other projects

- Suitable detectors for MOMENT are still under study
  - Flavor sensitive:  $e/\mu$  identification
    - Water Cherenkov, liquid Ar, liquid scin.
  - Charge sensitive: v and anti-v
    Magnetized, liquid scin., Gd-doped water (IBD)
  - NC/CC sensitive: NC background rejection
  - Very large target mass required
- Detector synergy
  - Magnetized detector, e.g. MIND by NF and SuperBIND by nuSTORM

 $\mu^+ \rightarrow e^+ + \nu_e + \nu_e$ 

 $\mu^- \rightarrow e^- + \nu_e +$ 

- Water Cherenkov detector (or doped), MEMPHIS by ESSnuSB/LBNO and HyperK detector
- Liquid scintillator detector such as JUNO

![](_page_30_Figure_10.jpeg)

## Summary

- As an interesting study, MOMENT attracts Chinese researchers to collaborate on neutrino beams
  - on MOMENT itself
  - on other international projects
- MOMENT shares many physical and technical aspects with other neutrino beams
  - Proton driver, target, secondary beam line, detector etc.
  - International collaborations will benefit the community: with the ongoing projects LBNF and Hyper-K, and with the studies Neutrino Factory, ESSnuSB and nuSTORM

## Thank you for attention!