RAL + Front End Studies International Design Study

David Neuffer *FNAL*

(January 5, 2009)

Outline

- Front End for the Neutrino Factory/MC
 - Concepts developed during study 2A
- \succ Concern on V_{rf}' as function of B_{sol}
- > Need baseline design for IDS
 - need baseline for engineering study
 - ~lower fields; medium bunch length

- > Change reference B-field to 1.5T
 - constant B to end of rotator
- > changing to $n_B = 12^{\circ}$ example
 - A bit longer than $n_B = 10$
 - optimize with lower fields
 - V'_{rf} < 12 MV/m
- Will see if we can get "better" optimum

Parameters of candidate release

> Initial drift from target to buncher is 79.6m

- 18.9m (adiabatic ~20T to ~1.5T solenoid)
- 60.7m (1.5T solenoid)

> Buncher rf - 33m

- 320 → 232 MHz
- $0 \rightarrow 9 \text{ MV/m}$ (2/3 occupancy)
- B=1.5T

> Rotator rf -42m

- 232 → 202 MHz
- 12 MV/m (2/3 occupancy)
- B=1.5T

> Cooler (50 to 90m)

- ASOL lattice, P₀ = 232MeV/c,
- Baseline has 15MV/m, 2 1.1 cm LiH absorbers /cell

Some differences

Used ICOOL to set parameters

- ACCEL model 10,
- Phase Model 0 -
- zero crossing set by t_{REFP 1}
 - refp 1 @ 233MeV/c,
 - 2 at 154MeV/c, 10 Å

> Cool at 232 MeV/c

- ~10% higher momentum
- absorbers ~10% longer
- Cools transverse emittance from 0.017 to 0.006m

µ/8 GeV p

Beam Through System

0.6000

70.00

0.0000

0.6000

70.00

0.0000

0.6000

70.00

0.0000

20.00

- Vary buncher/rotator gradients from baseline to explore sensitivity to gradient limits.
 - same baseline cooling channel (16MV/m, 1.15cm LiH)
 - 15 MV/m -> 1.1cm Li H

> Somewhat less sensitive than previous cases

Buncher / Rotator	0/0	3/6	4/7	5/8	6/9	7/10	8/11	9/12	10/ 13	11/ 14
µ/8GeVp at 240m (×10)	.136	.508	.686	.753	.797	.800	.831	.857	.821	.839
										_

More realistic model

- For buncher & rotator replace B=1.5T with "realistic" solenoid coils
 - (B ~1.5T)
 - 0.5 m long, 0.25m spacing
 - ~OK for rf feed in between
- ICOOL simulation shows no change in performance
 - (<~1%)

Heutrino Factor

Recent Studies

 From Juan G.'s studies 8GeV 20T beam from H. Kirk Also 8GeV 30T beam 	Case	µ/p @ z=245m
 New H. Kirk initial beam 20 T, 8 GeV beam, Hg target 	old CY init beam	0.083
 from more recent MARS (?)- (subtract 2.9ns to get mean of 0) more π/8GeV p (~10%) 	new 20T HK beam	0.090
 Tried 30T initial beam scaled 20 to 1.5T to 30 to 2.25 to 1.5T 	new 30T HK (25cm)	0.107
 ~20 to 25% more than with 20T 	new 30T HK (30cm)	0.113

rf requirements

> Buncher

- 319.63, 305.56, 293.93,285.46, 278.59, 272.05, 265.80, 259.83, 254.13, 248.67, 243.44, 238.42, 233.61 (13 f)
- ~100MV total

> Rotator

- 230.19, 226.13, 222.59, 219.48, 216.76, 214.37, 212.28, 210.46, 208.64, 206.90, 205.49, 204.25, 203.26, 202.63, 202.33 (15 f)
- 336MV total
- > Cooler
 - 201.25MHz -up to 75m ~750MV

Buncher rf cavity requirements

RF	Total	cavities	Gradient	Peak rf
frequency	voltage			power
319.63	1.368	1 (0.4m)	4 MV/m	
305.56	3.915	2 (0.4m)	5MV/m	
293.93	3.336	2 (0.45m)	4 MV/m	
285.46	4.803	2 (0.45m)	5.5MV/m	
278.59	5.724	2 (0.45m)	6.4 MV/m	
272.05	6.664	3 (0.45m)	5MV/m	
265.80	7.565	3 (0.45m)	5.7MV/m	
259.83	8.484	3 (0.45m)	6.5MV/m	
254.13	9.405	3 (0.45m)	7MV/m	
248.67	10.326	4 (0.45m)	6MV/m	
243.44	11.225	4(0.45m)	6.5MV/m	
238.42	12.16	4 (0.45m)	7MV/m	
233.61	13.11	4 (0.45m)	7.5MV/m	
	98.085			

11

Theutrino Factor

> Move toward "realistic" configuration

- add Be windows
- > Set up design for cost algorithm
 - rf cavity design (pillbox, dielectric)
 - rf power requirements
 - Magnet design

> Continuing front end IDS design study

- C. Rogers, G. Prior, D. Neuffer, C. Yoshikawa, K. Yonehara, Y. Alexahin, M. Popovic, Y. Torun, S. Brooks, S. Berg, J. Gallardo ...
- ~Biweekly phone Conference
- Cost meeting at CERN March
- April at Fermilab (IDS meeting)

