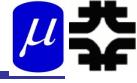
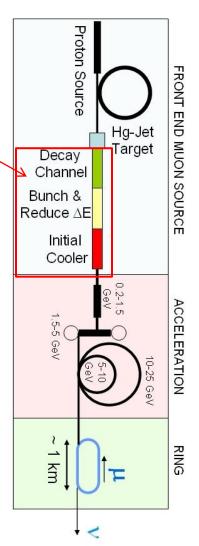
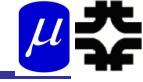
Neutrino Factory Front End (IDS) and Variations

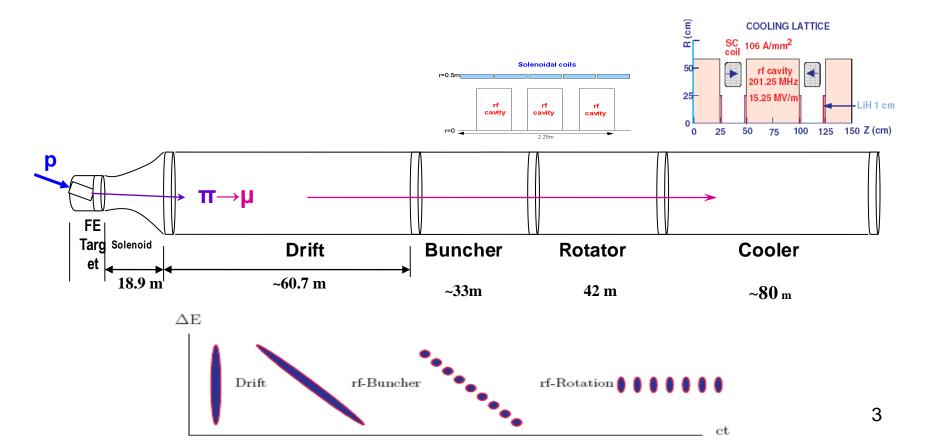
NuFACT99 -Lyon


David Neuffer

G. Prior, C. Rogers, P. Snopok, C. Yoshikawa, ...

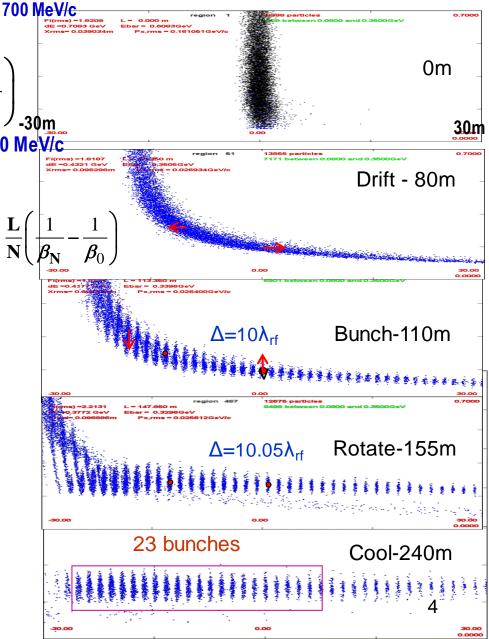

August 2011


Outline

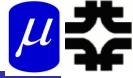

- > Front End for the IDS Neutrino Factory
 - baseline design for IDS
 - Developed from study 2A, ISS
 - Basis for engineering/costs
 - Rf requirements
- > Variations
 - rf gradient/B concerns
 - alternatives
 - gas-filled rf/insulated rf/low-B/
 - Losses control
 - Chicane, proton absorber
- > μ⁺-μ⁻ Collider Front End
 - Shorter bunch train
 - Larger V', rebunching
 - Rebuncher
 - Time reverse front-end

TOS Baseline Buncher and φ-E Rotator

- \triangleright Drift $(\pi \rightarrow \mu)$
- > "Adiabatically" bunch beam first (weak 320 to 232 MHz rf)
- > Φ -E rotate bunches align bunches to ~equal energies
 - 232 to 202 MHz, 12MV/m
- > Cool beam 201.25MHz

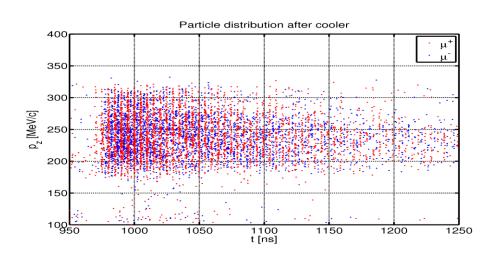

Neutrino Factory Front End

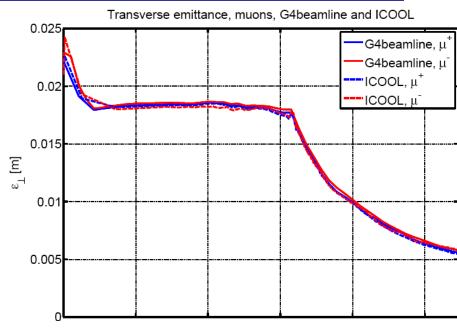
- Drift from target ~80m
 - Beam lengthens

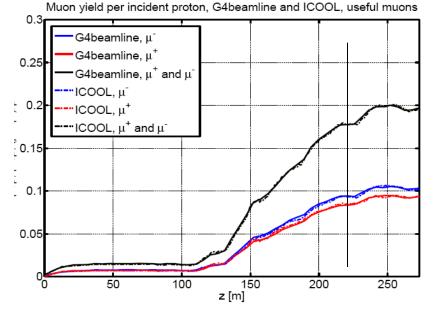

$$\delta(\mathbf{ct_i}) = \mathbf{L} \left(\frac{1}{\beta_i} - \frac{1}{\beta_0} \right)_{-30}$$

- Buncher (~33m)
 - N=10
 - $P_0=233$ MeV/c, $P_N=154$ MeV/c
 - 330 \rightarrow 235 MHz $\lambda_{rf}(L) = \frac{\delta ct_{0N}}{N} = \frac{L}{N} \left(\frac{1}{\beta_{N}} \frac{1}{\beta_{0}} \right)$
 - V'= 0→9 MV/m
- Rotator (~42m)
 - N=10.05 -
 - accelerate/decelerate bunches
 - 235 → 202 MHz,V'= 12 MV/m
- > Cooler (~80m)
 - 201.25 MHz, ASOL lattice
 - 15MV/m in rf cavities
 - LiH or H₂ cooling
- Captures both µ⁺ and µ⁻

ICOOL - G4beamline

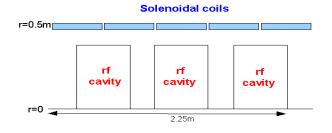


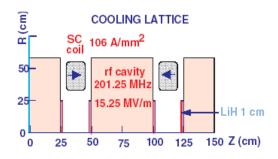

P. Snopok has run the IDS front end with both ICOOL & G4 beamline


- High statistics (>10⁵ tracks)
- Obtains ~0.1 μ⁺ and μ⁻ /8 GeV p
 within acceptances
 - $\varepsilon_T < 0.03, \, \varepsilon_L < 0.15$

> Validation of simulation codes

Simultaneous simulation of both signs





Parameters of IDR baseline

- > Initial drift from target to buncher is 79.6m
 - 18.9m (adiabatic ~20T to ~1.5T solenoid)
 - 60.7m (1.5T solenoid)
- Buncher rf 33m
 - 320 → 232 MHz
 - $0 \rightarrow 9 \text{ MV/m}$ (2/3 occupancy)
 - B=1.5T
- > Rotator rf -42m
 - 232 → 202 MHz
 - 12 MV/m (2/3 occupancy)
 - B=1.5T
- > Cooler (50 to 90m)
 - ASOL lattice, P₀ = 232MeV/c,
 - Baseline has 15MV/m, 2 1.1 cm LiH absorbers /cell

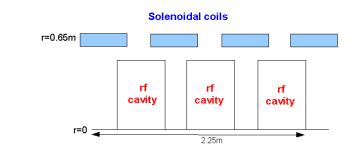
IDS: hardware specification

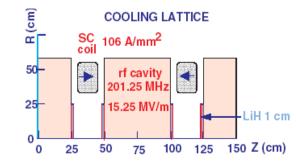
- > Specify front end in specific rf cavities, frequencies
- Buncher 13 rf frequencies
 - 319.63, 305.56, 293.93, 285.46, 278.59, 272.05, 265.80, 259.83, 254.13, 248.67, 243.44, 238.42, 233.61 (13 f)
 - ~100MV total
 - Keep V' < ~7.5MV/m
- > Rotator 15 rf frequencies
 - 230.19, 226.13, 222.59, 219.48, 216.76, 214.37,212.28, 210.46,208.64, 206.90, 205.49,204.25, 203.26, 202.63,202.33 (15 f)
 - 336MV total, 56 rf cavities
 - 12MV/m at 2/3 occupancy
- > Cooler
 - 201.25MHz -up to 75m ~750MV
 - ~15 MV/m, 100 rf cavities

Magnet Requirements:

Table XIV. Summary of front-end magnet requirements.

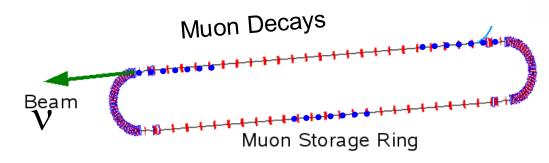
			0	1	
	Length	Inner radius	Radial thickness	Current density	Number
	[m]	[m]	[m]	$[A/mm^2]$	
Initial transport	0.5	0.68	0.04	47.5	180
Cooling channel	0.15	0.35	0.15	± 107	100

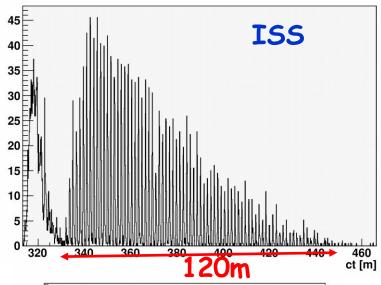


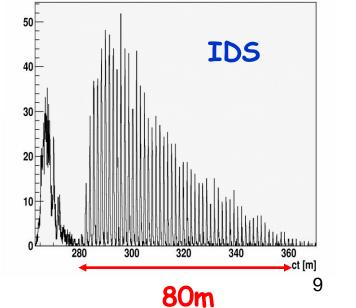

Buncher/Rotator/Cooler requirements

> Buncher

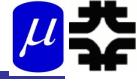
- 37 cavities (13 frequencies)
- 13 power supplies (~1—3MW)
- > RF Rotator
 - 56 cavities (15 frequencies)
 - 12 MV/m, 0.5m
 - ~2.5MW (peak power) per cavity
- > Cooling System 201.25 MHz
 - 100 0.5m cavities (75m cooler), 15MV/m
 - ~4MW /cavity


Front End section	Length	#rf cavities	frequencies	# of freq.	rf gradient	rf peak power requirements
Buncher	33m	37	319.6 to 233.6	13	4 to 7.5	~1 to 3.5 MW/freq.
Rotator	42m	56	230.2 to 202.3	15	12	~2.5MW/cavity
Cooler	75m	100	201.25MHz	1	15 MV/m	~4MW/cavity
Total drift)	~240m	193		29	~1000MV	~550MW

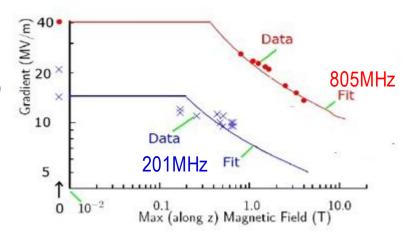

How Long a Bunch Train for IDS?

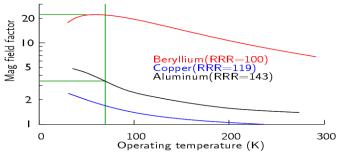


- ISS study alotted space for 80 bunches (120m long train)
- For IDS 80m (54 bunches) is probably plenty

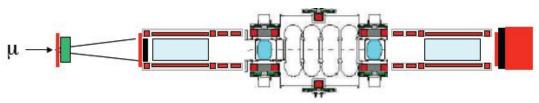

IDS: ~3 bunch trains simultaneously -both μ + and μ -

Possible rf cavity limitations




V'_{rf} may be limited in B-fields

- 800 MHz pillbox cavity
- 200 MHz pillbox test (different B)
- ➤ NF needs up to ~1.5T, 12 MV/m
 - More for cooling

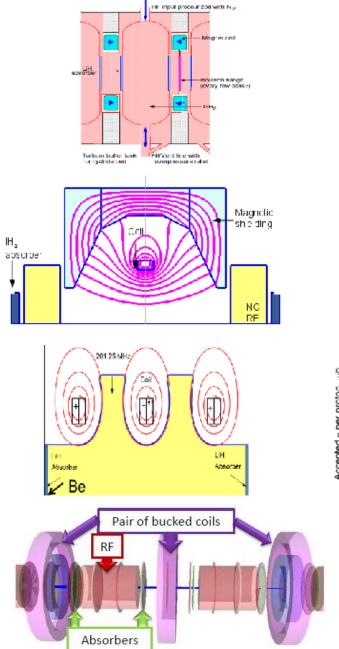

Potential strategies:

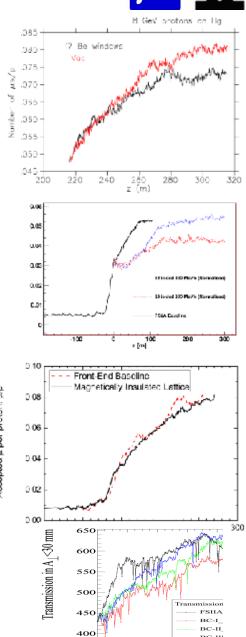
- Use Be Cavities (Palmer)
- Use lower fields (V', B)
 - <10MV/m at 1.5T?</p>
 - Need variant for cooling?
- Cooling channel variants
 - Use gas-filled rf cavities
 - Insulated rf cavities
 - Bucked coils (Alekou)
 - Magnetic shielding

Need More Experiments!

Cooling Lattice variations

- Gas-filled rf
 - With LiH absorbers


- Magnetically shielded
 - Small B at rf

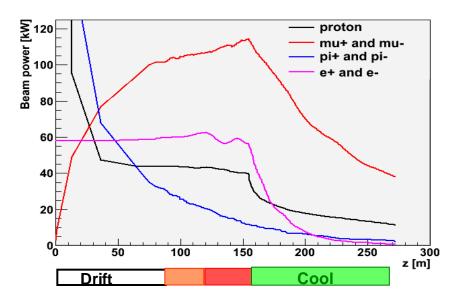

- Magnetically Insulated
 - B rf surface

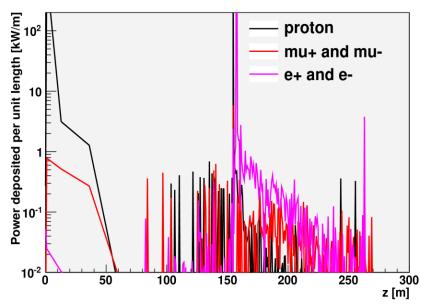
- > Bucked Coil
 - Reduced B in rf

Beam

Alekou

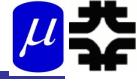
Problem: Beam losses along Front End

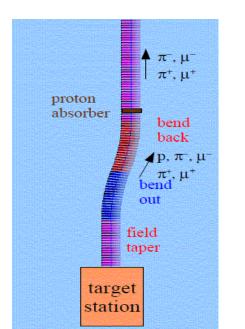

> Start with 4MW protons

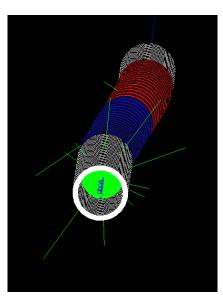

- End with ~50kW μ⁺ + μ⁻
 - plus p, e, π , ...
 - · ~20W/m μ-decay
- ~0.5MW losses along transport
 - >0.1MW at z>50m

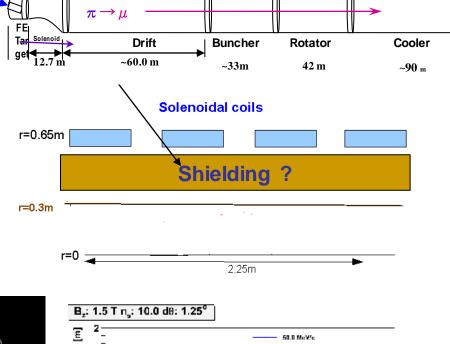
> Want "Hands-on" maintenance

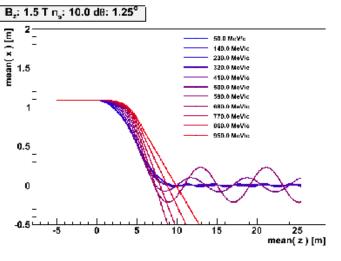
- hadronic losses < 1W/m
- Booster, PSR criteria
- Simulation has >~100W/m
 - With no collimation, shielding, absorber strategy



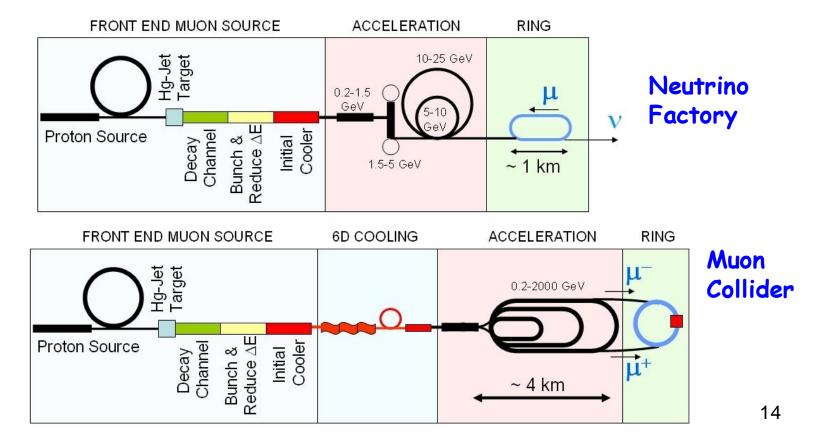




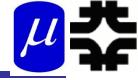

Control of Front End Losses



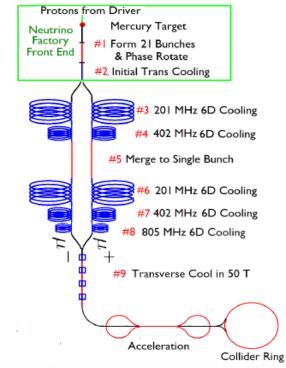
- > Add shielding
 - Resulting losses?
- Chicane and proton absorber to localize losses (C. Rogers)
 - Removes most protons
 - Most desired μ's survive
 - Greatly reduces downstream activation problem

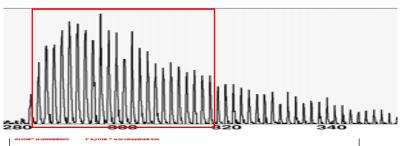


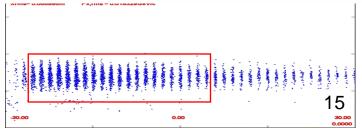
Muon Collider/NF Beam Preparation



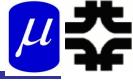
- Baseline Muon Collider beam preparation system identical to that for Neutrino Factory
 - downstream portions (6D cooling, acceleration, collider) are distinct
 - much more cooling and acceleration needed for collider

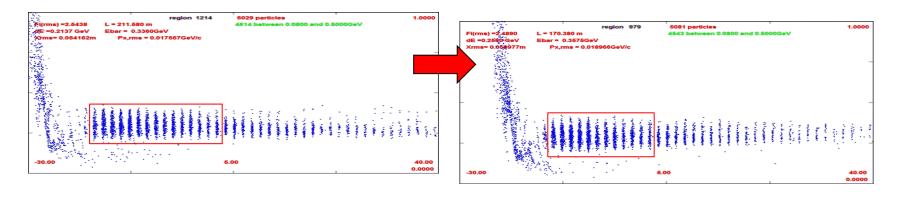


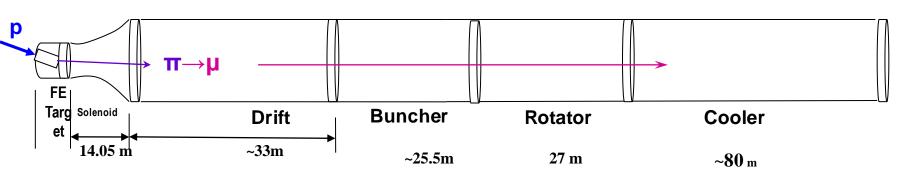



Front End for Muon Collider

- > Muon Collider front end is different
 - must capture μ⁺ and μ⁻
 - want single bunches (not trains)
 - Bunches are recombined ...
 - Maximum µ/bunch wanted
 - Longitudinal cooling needed;
 - Larger rf gradient can be used (?)
 - NF will debug gradient limits
 - Cost is less constrained
- Use shorter BR system, more gradient, and capture at higher momentum
 - 230 → 270 MeV/c
 - 150m → 120m
 - 9/12/15 MV/m → 15/16/18 or 15/18/20 MV/m
 - 1.5T→2T

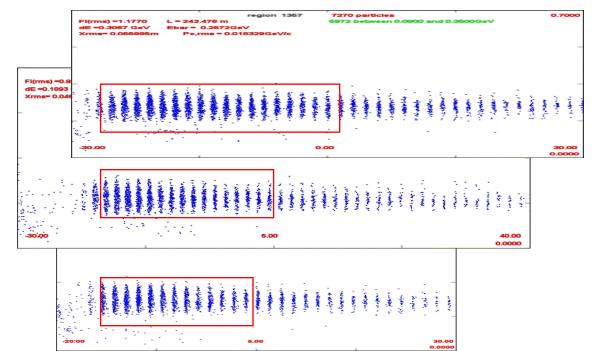




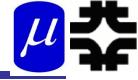


Muon Collider variants

- > ΔN: 10→8
- > Rf gradients: $12.5 \rightarrow 15 \rightarrow 18 \text{ MV/m}$
 - Or $15 \rightarrow 18 \rightarrow 20 \text{ MV/m}$
- ➤ Shorter system ~102m

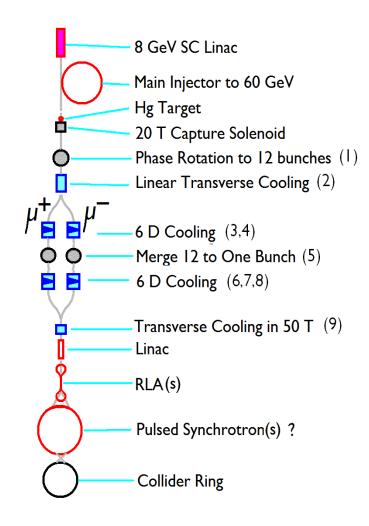


Variant front ends for muon collider


Table 1: Comparison of muon source front end systems.

Front end Scenario	Drift, Buncher, Rotator Length	Rf Voltages	Full length (w 75m cooling)	μ⁺ /p (ε ₊ <0.03, ε _L <0.3m)		Core bunches, N _{B,} all μ ⁻ /p
IDS/NF	80.6,33,42m	0→9,12,15	230m	0.086	0.116	20/0.107
N=10	55.3, 31.5, 33	0→12,15,18	205	0.106	0.143	16/0.141
N=8	47.8, 35.5, 27 m	0→15,18,20	180	0.102	0.136	13/0.123

Integrate into 6-D cooling system



> Initial Cooling transition

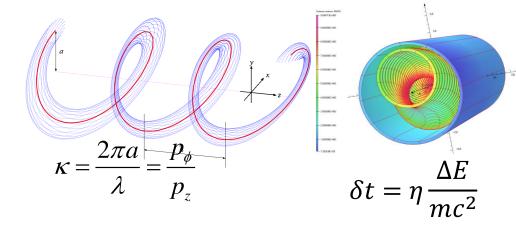
- NF transverse cooling only
- Transition to 6-D cooling needed
 - Snake? HCC? "Guggenheim"?
 - Split μ⁺- μ⁻
 - Cool 6-D by large factors

Recombine Bunches

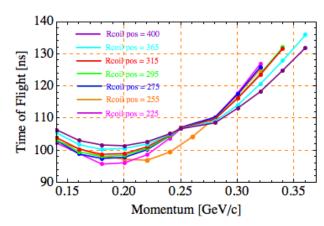
- After cooling to small bunches
- Front end splits 1 huge emittance bunch into string of smaller ϵ bunches
 - Can we time reverse to combine cooled bunched to single bunches
 ?

Bunch Recombination: Helical Channel

Would like a large dependence of path length on energy

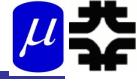


 Linear dependence is nicest ...

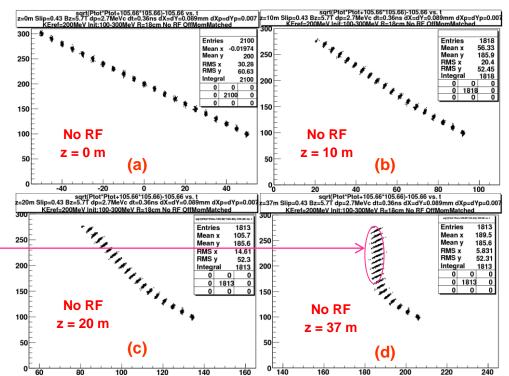

$$> \eta = 0.43$$
 looks possible

•
$$HC - B = 4.2T b_d = 0.75$$
, $b_q = 0.4$

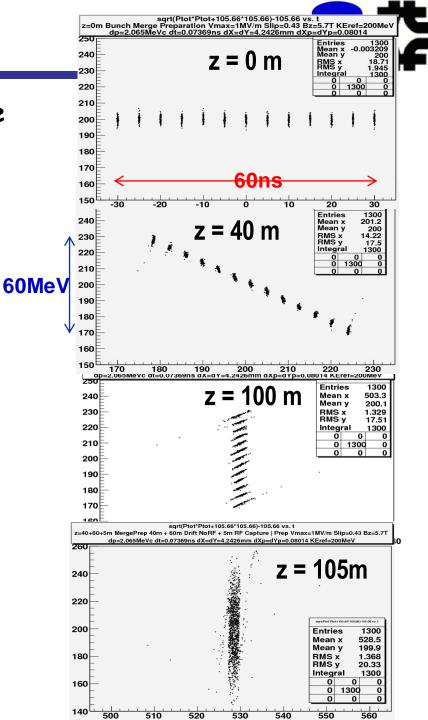
- $\kappa = 1$, $\lambda = 1.6 \text{m}$, $P_0 = 290 \text{MeV/c}$
- D^=1.7, D=0.44m



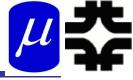
$$\eta = \frac{\sqrt{1 + \kappa^2}}{\gamma \beta^3} \left[\frac{\hat{D}\kappa^2}{1 + \kappa^2} - \frac{1}{\gamma^2} \right]$$



Longitudinal Dynamics in Helical Channel

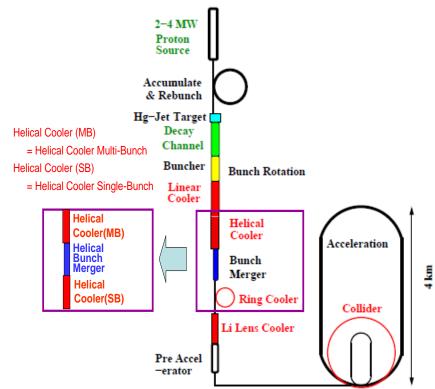

- Set up an HCC & see if bunch recombination is possible
 - κ=1, η=0.43
 - $\lambda = 1m$
- Very linear bunching overT=150—280 MeV
- > See if one can set up HC line for rebunching with this case
 - Defer matching problem by using constant HCC

Simulate in 3-D- G4BL TOC Yoshikawa


- Obtain beam from end of 3-stage
 HCC channel K. Yonehara
 - 13 bunches, ϵ_1 =0.0011m
 - η=0.43 transport
- > 40m 1MV/m rf
 - 204 → 270 MHz
 - (+45° to -45°) (N=12.25)
 - n=0.43
- > 60m drift

- > 200MHz rf -10MV/m
 - >95% capture
 - $\epsilon_{\rm L} = \sim 0.040$

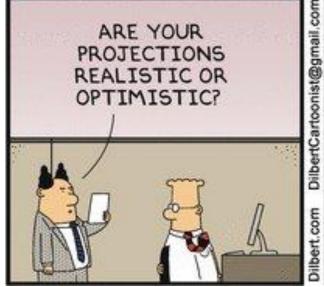
Summary

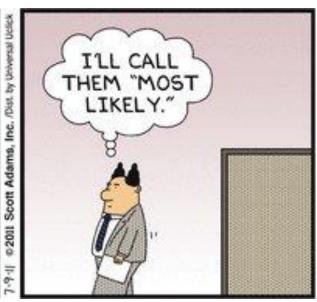


> Muon Collider:

 Need to integrate bunch combiner into complete cooling scenario

> v-Factory front end


- costing exercise for IDR
 - "Most Likely" cost range?
- rf in magnetic fields?
 - adapt to rf measurements
- manage losses
 - chicane/absorber/...
 - simulation studies



Questions?

