Front End Studies and Plans

David Neuffer *FNAL*

(October 27, 2009)

Outline

- > Front End for the Neutrino Factory/MC
 - Shorter front end example
 - basis for present study

- > Need baseline design for IDS
 - need baseline for "5-year Plan"

Plan for IDS

- \succ Need one design likely to work for V_{rf}/B -field
 - rf studies are likely to be inconclusive
 - B=1.25T; V' = 10MV/m is very likely to work
 - B= 2T; V' = 15 MV/m should work with Be
- > Hold review to endorse a potential design for IDS
 - likely to be acceptable (V_{rf}/B-field)
 - April 2010 ?
- Use reviewed design as basis for IDS engineering study

IDS candidate

- \gt ISS study based on n_B = 18 (280 MeV/c to 154 MeV/c)
- \triangleright Reference shorter has $n_B = 10$ (280 MeV/c to 154 MeV/c)
 - slightly higher fields (2T, 15MV/m)
- > Looking for candidate variation for IDS

How Long a Bunch Train for IDS?

- > ISS study alotted space for 80 bunches (120m long train)
 - 80m or 54 bunches is probably plenty

-30 ₅

Bunch train length

- Within IDS design could reduce bunch train to ~80m (52 bunches)
 - very little mu loss
- With shorter front end, could reduce that to 50m or less
- For Collider scenario ~12 best bunches, (18m) contains ~70% of muons

Recent Studies on Lower Fields

Adequate acceptance can be obtained by reducing magnetic fields and gradients

- > B -> 1.25T, V' -> 10 MV/m ??
 - (10MV/m is 7MV/m real estate gradient; could use 7MV/m if space is filled.)
- Reduced B, V' are relatively certain to work.
- > Cost optimum?
 - B=1.5T ?, 12MV/m

Tried changing B

- > B= 1.25 T (~Study 2)
- > match into alternating solenoid
 - Use old R. Palmer match
- > Varied Cooling Gradients
 - Less gradient => less capture
- > 1.25T only slightly worse than 2.0T
- > Change reference to 1.5T

$B_0 = 2.0T - > 1.5T$ Results

> Muons per 10 8-GeV protons

Cooler/ Rotator	10	12	14	15	17	18 MV/m
10	0.35 (0.63)	0.55 (0.67)	0.66	0.73		
12		0.57 (0.72)	0.754	0.77		0.80
14			0.776	0.80 0.82	0.84	
15				0.81	0.85 0.88	0.84
	(0.65cm)	(0.8cm)				

B=1.5T

Variation is not strong; more rf still means more muons

Front end Optimization

- Change reference B-field to 1.5T
 - constant B to end of rotator
 - As good as 2.0T case
- > Redoing n_B ="12" example
 - A bit longer than $n_B = 10$
 - optimize with lower fields
- Will see if I get "better" optimum

