Front End – present status

David Neuffer

December 4, 2014

Previous Versions

- 201.25 MHz baseline examples
 - 24/8GeV initial beam

> Front End for Muon Collider/ Neutrino Factory

- Baseline for MAP
 - 8 GeV proton beam on Hg target
- 325 MHz
- With Chicane/Absorber

> Current status

- New targetry
 - 6.75 GeV on C target
- Possible changes

DS Baseline Buncher and φ-E Rotator

- > Drift $(\pi \rightarrow \mu)$
- "Adiabatically" bunch beam first (weak 320 to 232 MHz rf)
- $\blacktriangleright \Phi E$ rotate bunches align bunches to ~equal energies

COOLING LATTICE

- 232 to 202 MHz, 12MV/m
- > Cool beam 201.25MHz
- ➤ Captures and Cools both µ⁺ and µ⁻

325MHz System "Collider"

- 20T→ 2T
- Buncher \triangleright
 - P_o=250MeV/c
 - P_N=154 MeV/c; N=10
 - $V_{rf}: 0 \rightarrow 15 \text{ MV/m}$
 - (2/3 occupied)
 - f_{RF}: 490→ 365MHz

> Rotator

- V_{rf}: 20MV/m
 - (2/3 occupied)
- f_{RF} : 364 \rightarrow 326MHz
- N=12.045
- $P_0 P_N \rightarrow 245 \text{ MeV/c}$
- > Cooler
 - 245 MeV/c
 - 325 MHz
 - 25 MV/m
 - 2 1.5 cm LiH absorbers /0.75m

Simulation Results

- ~0.125 µ/p within acceptances
- with ~60m Cooler
- 325 MHz less power
- shorter than baseline NF

> But

- uses higher gradient
- higher frequency rf → smaller cavities
- shorter than baseline NF
- more bunches in bunch train

325 "Collider " w Chicane/Absorber

ICOOL results

- 325 "muon collider" with chicane absorber
 - with added drift between chicane and absorber
 - ~30m
 - ~0.12 µ/p → ~0.105 µ/p
 - smaller emittance beams
 - scraped to better fit

Useful muons (n_2, typical cuts)

> Change to shorter taper

- $15m \rightarrow 6m$
- (Hisham) slight improvement in throughput (~5%)
- We were using Hishams more recent distributions
 - (May 2014)
 - Gains ~5—10%
 - Total is now ~0.115 µ/p (in baseline ICOOL simulation units)

Accelerate factor

New Proton Driver parameters

CM

> 6.75 GeV p, C target 200 • $20 \rightarrow 2T$ short taper ~5m (previously 15) 100 X. Ding produced particles at z=2m using Mars 0- short initial beam > Redo ICOOL data sets to match initial beam -100 ref particles redefined in for003.dat -200 and for001.dat 1.60×10^3 800 0

Use old FE with new initial beam

- New beam has too large initial size and divergence
 - initial transverse emittance >2X larger
 - 0.0027 \rightarrow 0.0067 m-GeV/c
 - ~half of initial beam lost in <6m</p>

First simulations results

6.75 GeV p/ C target – First Look

- > Much worse than previous 8 GeV p / Hg target
- > 6.75 (~25% less), Hg → C ...
 - but initial beam has very large phase space
- > Causes for early losses ???
 - Long C target not a good match to short taper ?
 - target should be within lens center ...
 - "Beam dump" after target blows up π beam ??
- Bugs, errors?
 - Changes in Mars production code ??
 - normalization error ??
 - initialization errors
 - starts from z=2m rather than z=0
- After initial factor of 2 loss, very similar to old front end case
 - not yet reoptimized
- > To investigate/debug/reoptimize ..

- > Replace vacuum rf with gas-filled rf
 - Do Buncher / phase rotation function as well ?
- > Replace initial 4-D Cooler with 6-D cooler
 - Has been initiated by Yuri
 - Would like a reference version to use as acceptance baseline
- > Integrate Buncher / Phase-rotation / Cooling
 - more compact system
 - adiabatic \rightarrow snap rotation
- > Transform to general R&D
 - initial beam \rightarrow ???
 - lower B-field, lower energy
 - other uses (mu2e ... LFV expts.

Any comments?

