Front End – present status

David Neuffer

March 17, 2015

Outline

Front End for Muon Collider/ Neutrino Factory

- Baseline for MAP
 - 8 GeV proton beam on Hg target
- 325 MHz
 - With Chicane/Absorber

Current status

- New targetry
 - 6.75 GeV on C target
- New Mars generated beams
 - Mars ouput much different from previous version
- Buncher rotator with H₂ gas
 - rematches OK except for loss at beginning of buncher
 - can cool and rotatoe simultaneously

325MHz System "Collider"

- 20T → 2T
- > Buncher
 - $P_0 = 250 MeV/c$
 - $P_N = 154 \text{ MeV/c}; N = 10$
 - $V_{rf}: 0 \rightarrow 15 \text{ MV/m}$
 - (2/3 occupied)
 - f_{RF}: 490 → 365 MHz

- V_{rf}: 20MV/m
 - (2/3 occupied)
- f_{RF} : 364 \rightarrow 326 MHz
- N = 12.045
- $P_0 P_N \rightarrow 245 \text{ MeV/c}$
- > Cooler
 - 245 MeV/c
 - 325 MHz
 - 25 MV/m
 - 2 1.5 cm LiH absorbers /0.75m

Simulation Results

- ~0.125 µ/p within acceptances
- with ~60m Cooler
- 325 MHz less power
- shorter than baseline NF

> But

- uses higher gradient
- higher frequency rf → smaller cavities
- shorter than baseline NF
- more bunches in bunch train

Accelerate factor

New Proton Driver parameters

CM

> 6.75 GeV p, C target 200 • $20 \rightarrow 2T$ short taper ~5 m (previously 15) 100 X. Ding produced particles at z = 2 m using Mars0- short initial beam > Redo ICOOL data sets to match initial beam -100 ref particles redefined in for003.dat -200 and for001.dat 1.60×10^3 800 0

Mollowing Scott's review of front end

> Use his initial distributions (obtained by X. Ding)

- 8 GeV protons on Hg target
 - + and minus
- 6.75 GeV protons on C target
- Start beam from z = 10 m
 - must retranslate into ICOOL reference particles
- Early losses on apertures have already occurred
 - 23 cm apertures

ICOOL translation tips

- start at "z = 10 m"
 - (particle time zero is at -1 m)
- reference particles
 - 250 MeV/c ; 154 MeV/c μ⁺
 - 165.75 MeV ; 81.1 MeV μ⁺
 - time set by 1 m as 6.75 GeV proton + 10m as μ^{\star}
 - reference particles set in for003.dat, not for001.dat

01-Feb-2015 X. Ding C 10 m -

0.0 0.250 3.95709E-08 0.0 0.154 4.381345E-08 2

1 1-3 0 4.354479e-008 1.000000e+000 0.03737 0.03656 0 7.861861e-004 2.558375e-002 2.189235e-001 0 0 0

3 1-3 0 3.712592e-008 1.000000e+000 -0.03459 -0.11247 0 1.617131e-001 3.506310e-002 4.670452e-001 0 0 0

6 1-3 0 3.748837e-008 1.000000e+000 0.00304 -0.04460 0 -1.827203e-002 -5.931789e-002 7.809555e-001 0 0 0

10 1-30 3.738523e-008 1.000000e+000 0.07979 0.13944 0-4.890422e-002 3.733585e-001 1.515145e+000 0 0 0

In ICOOL for001.dat

REFP 20003 REF2 2000

- Simulation results
 - Hg target 8 GeV -end of cooling
 - ~0.0756 μ⁺/p; ~0.0880 μ-/p;
 - C target 6.75 GeV p
 - ~0.0613 μ⁺/p; ~0.0481 μ⁻/p;
 - 0.0726 μ^+/p ; ~0.0570 μ^-/p when multiplied by 8/6.75
 - Previous front ends had ~0.1 to ~0.125 µ/p

Progression of beam through system

- Simulations capture typically somewhat less than before
 - Big difference in MARS production model
 - Mars Inclusive → LAQGSM=1
 - Drop in production for ~8 GeV
 - Are previous MARS simulations that showed an advantage in production for ~8 GeV still true ?
 - IQGSM=0: exclusive CEM (cascade exciton model?) for E < 3 GeV, MARS inclusive for E > 5 GeV, LAQGSM for some special cases. Old MARS default.
 - IQGSM=1: CEM for E < 0.3 GeV, LAQGSM for 0.5 GeV < E < 8 GeV, MARS inclusive for E > 10 GeV. New MARS default.

Add gas-filled rf in buncher/rotator

> 34 - 100 atm equivalent

- 1.14 MeV/m
 - 34 atm
- 3.45 MeV/m
 - 100atm
- for 34 atm
 - add ~2 MV/m to rf

First tries with ICOOL

- GH in buncher 1 atm
 - no change in capture
- Change to 34 atm by
 - DENS GH 34.0
- Runs OK but
 - reduces capture by 20%
 - mostly from low-E muons
 - shorter bunch train

- > added gas in rotator
 - 34 atm
 - dE/dx
- Increased rf a bit
 - Buncher $15z \rightarrow 2+20(z/24)$ MV/m
 - Rotator $20 \rightarrow 25$
 - ref particles decelerate to 230Mev/c
 - Cooler 25 \rightarrow 28 MV/m
- > Results are not so bad
 - 8 GeV Hg + → 0.0718 µ/p
 - 8 GeV Hg → 0.0773 µ/p
 - 6.75 GeV C + → 0.0539 μ⁺/p
 - 6.75 GeV C -→ 0.0430 µ⁻/p

~10% worse than baseline

Tweak of reference particle to fit ICOOL features

REFP

```
2 0.250 0. 1.7 4
```

REF2

- 2 0.154 0. 7.1
- use phase model 4
 - tracks reference particles energy loss in drft/absorber but not in rf
 - fixed energy gain.loss in rf
- ref particle acceleration fitted to

FrontEnd variations

- Reduce buncher gas to 17 atm
 - ~ 10% better
 - back to ~ baseline
 - ~0.062 μ⁺/p
- change decelerating rotator back to constant energy rotator
 - C → ~0.063 µ⁺/p
 - about the same
 - no real advantage/disadvantage in deceleration

- Note initial beam is "cooled", but only in one dimension
 - B = 2T no field flip
 - Angular momentum increases

z	ε _†	ℓ=L/2	٤+	٤_
59	0.0184	0.0054	0.0246	0.0138
78	0,0173	0.0059	0.0243	0.0124
102	0.0151	0.0074	0.0242	0.0095

Effect of new initial distributions

utions μ

- > Redo with old initial beams
 - 2010 Hg 8 GeV p (older MARS)
 - 0.114 μ⁺/p
 - 2014 Hg 8 GeV p (old MARS)
 - 0.112 μ⁺/p
 - Compare with current BEAM
 - Hg 8 GeV p (new MARS)
 - 0.072 **µ⁺/p**
- Major difference is newer MARS model

- Most of loss in intrinsic performance is from gas in buncher
 - Beam enters completely unbunched
 - Initial rf is weak; and slowly increases
- After some initial loss, SIMILAR TO GAS-FREE BASELINE

Increase rotator to 100atm

- > Buncher at 17 atm
 - LESS INITIAL LOSS
- Increase Buncher gradient to 28 MV/m
 - to compensate energy loss
- > Fairly good performance
 - ~0.06 3µ/p (C 6.75)

- > More cooling in Rotator
 - 1-D cooling (2T solenoid)
 - one mode highly damped
- Significant initiation of cooling
 - (integrating rotator/cooler)

z	ε _†	{=L/2	٤,	_3
77	0.0176	0.0061	0.0248	0.0124
89	0,0144	0.0077	0.0241	0.0087
102	0.0128	0.0088	0.0242	0.0066

