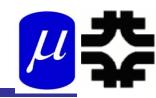

Front End – gas-filled cavities

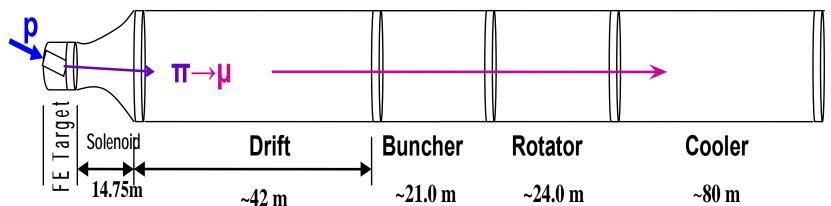
David Neuffer

May 19, 2015

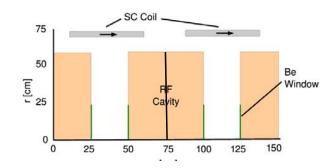
Outline

> Front End for Muon Collider/ Neutrino Factory


- Baseline for MAP
 - 8 GeV proton beam on Hg target
- 325 MHz
 - With Chicane/Absorber


> Current status

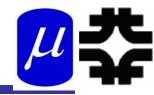
- New targetry
 - 6.75 GeV on C target
- New Mars generated beams
 - Mars ouput much different from previous version
- Buncher rotator with H₂ gas
 - rematches OK except for loss at beginning of buncher
 - can cool and rottoe simultaneously
- beam for Low-energy muons
 - 150 MeV/c buncher/rotator



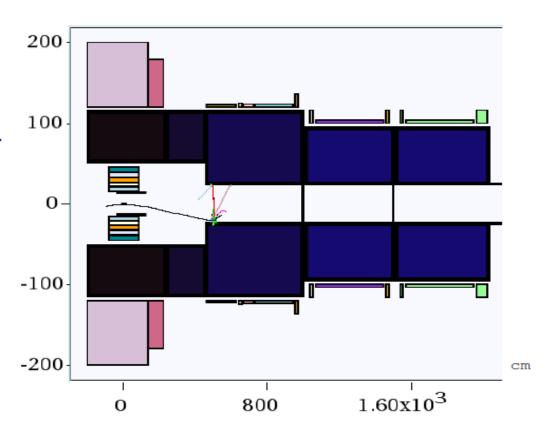
325MHz "Collider" front end

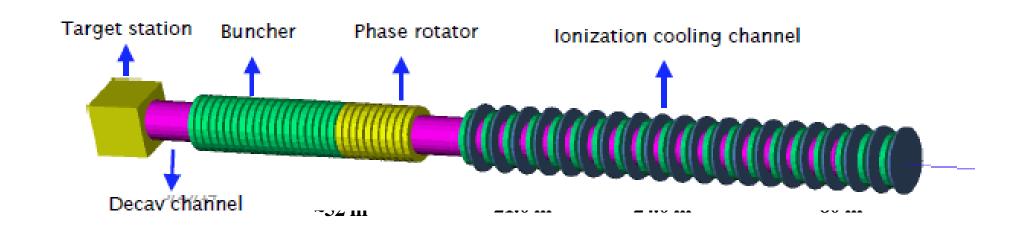
- > Drift
 - 20 T → 2 T
- > Buncher
 - $P_o = 250 \text{MeV/c}$
 - $P_N = 154 \text{ MeV/c}; N = 10$
 - $V_{rf}: 0 \rightarrow 15 \text{ MV/m}$
 - (2/3 occupied)
 - $f_{RF}: 490 \rightarrow 365 \text{ MHz}$

> Rotator


- V_{rf} : 20MV/m
 - (2/3 occupied)
- $f_{RF}: 364 \rightarrow 326 \text{ MHz}$
- N = 12.045
- $P_0.P_N \rightarrow 245 \text{ MeV/c}$

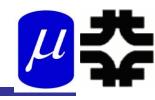
> Cooler


- 245 MeV/c
- 325 MHz
- 25 MV/m
- 2 1.5 cm LiH absorbers /0.75m



New Proton Driver parameters

- > 6.75 GeV p, C target
 - $20 \rightarrow 2$ T short taper
 - ~5 m (previously 15)
 - X. Ding produced particles at $z=2 \rightarrow 10$ m using Mars
 - short initial beam
- Redo ICOOL data sets to match initial beam
 - ref particles redefined
 - in for003.dat
 - and for001.dat



- > Use initial distributions (obtained by X. Ding)
 - 8 GeV protons on Hg target
 - + and particles
 - 6.75 GeV protons on C target
 - Start beam from z = 10 m
 - must retranslate into ICOOL reference particles
 - Early losses on apertures have already occurred
 - 23 cm apertures

ICOOL translation tips

- > start at "z = 10 m"
 - (particle time zero is at -1 m)
- > reference particles
 - 250 MeV/c; 154 MeV/c μ⁺
 - 165.75 MeV; 81.1 MeV μ⁺
 - time set by 1 m as 6,75 GeV proton + 10 m as μ^+
 - reference particles set in for003.dat, not for001.dat

for003.dat

01-Feb-2015 X. Ding C 10 m -

0.0 0.250 3.95709E-08 0.0 0.154 4.381345E-08 2

1 1-3 0 4.354479e-008 1.000000e+000 0.03737 0.03656 0 7.861861e-004 2.558375e-002 2.189235e-001 0 0 0 3 1-3 0 3.712592e-008 1.000000e+000 -0.03459 -

3 1 -3 0 3.712592e-008 1.000000e+000 -0.03459 - 0.11247 0 1.617131e-001 3.506310e-002 4.670452e-001 0 0 0

6 1-3 0 3.748837e-008 1.000000e+000 0.00304 - 0.04460 0 -1.827203e-002 -5.931789e-002 7.809555e-001 0 0

10 1-3 0 3.738523e-008 1.000000e+000 0.07979 0.13944 0 -4.890422e-002 3.733585e-001 1.515145e+000 0 0

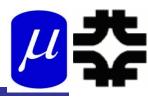
In ICOOL for001.dat

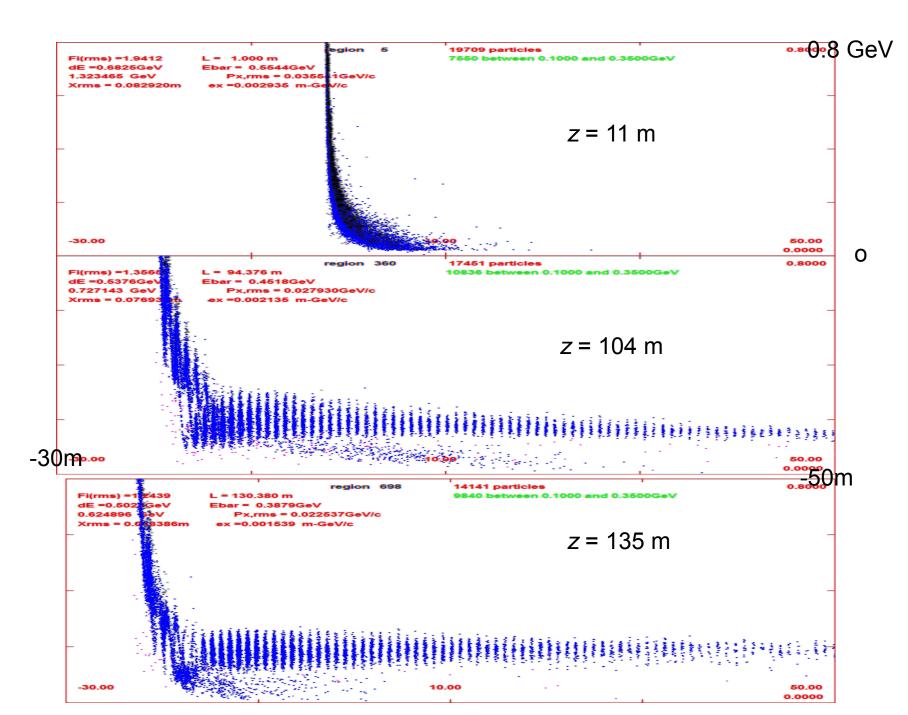
REFP

20003

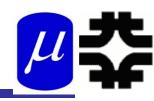
REF2

2000

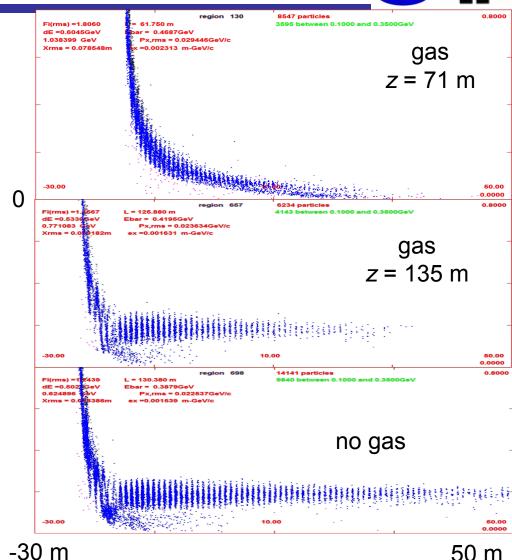

Simulation results



- > Simulation results
 - Hg target 8 GeV -end of cooling
 - ~0.0756 μ⁺/p; ~0.0880 μ-/p;
 - C target 6.75 GeV p
 - $\sim 0.0613 \, \mu^{+}/p$; $\sim 0.0481 \, \mu^{-}/p$;
 - 0.0726 μ^{+}/p ; ~0.0570 μ^{-}/p when multiplied by 8/6.75
- \triangleright Previous front ends had ~0.1 to ~0.125 μ/p
 - Redo with old initial beams
 - 2010 Hg 8GeV p
 - $-0.114\mu^{+}/p$
 - 2014 Hg 8GeV p
 - 0.112µ⁺/p


Progression of beam through system


6.75 GeV p/ C target – 8GeV Hg


- > Simulations capture typically somewhat less than before
 - Big difference in MARS production model
 - Mars Inclusive → LAQGSM=1
 - Drop in production for ~8 GeV
 - Are previous MARS simulations that showed an advantage in production for ~8 GeV still true?
 - IQGSM=0: exclusive CEM (cascade exciton model?) for E < 3 GeV, MARS inclusive for E > 5 GeV, LAQGSM for some special cases. Old MARS default.
 - IQGSM=1: CEM for E < 0.3 GeV, LAQGSM for 0.5 GeV < E < 8 GeV, MARS inclusive for E > 10 GeV. New MARS default.

- > Stratakis et al. have done cooling channel with gas-filled rf
 - ~34 atm H₂ to stop breakdown
- > Extrapolate back to include buncher/rotator
 - use gas to suppress breakdown in buncher/rotator
 - rf in ~2 T solenoids

Add gas-filled rf in buncher/rotator



- > 34 100 atm equivalent
 - 1.14 MeV/m
 - 34 atm
 - 3.45 MeV/m
 - 100atm
 - for 34 atm
 - add ~2 MV/m to rf
- > First tries with ICOOL
 - GH in buncher 1 atm
 - no change in capture
 - Change to 34 atm by
 - DENS GH 34.0
 - Runs OK but
 - reduces capture by 20%
 - mostly from low-E muons
 - shorter bunch train

Updated gas-filled front end

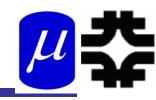
- > added gas in rotator
 - 34 atm
 - dE/dx
- > Increased rf a bit
 - Buncher $15z \rightarrow 2+20(z/24)$ MV/m
 - Rotator 20 → 25
 - ref particles decelerate to 230Mev/c
 - Cooler 25 → 28 MV/m
- > Results are not so bad
 - 8GeV Hg + \rightarrow 0.0718 μ/p
 - 8GeV Hg → 0.0773 μ/p
 - 6.75 geV $C + \rightarrow 0.0539 \, \mu^{+}/p$
 - 6.75 geV C → 0.0430 μ -/p

~10% worse than baseline

> Tweak of reference particle to fit ICOOL features (for 100atm)

REFP

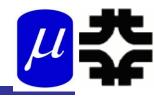
2 0.250 0. 1.55 4

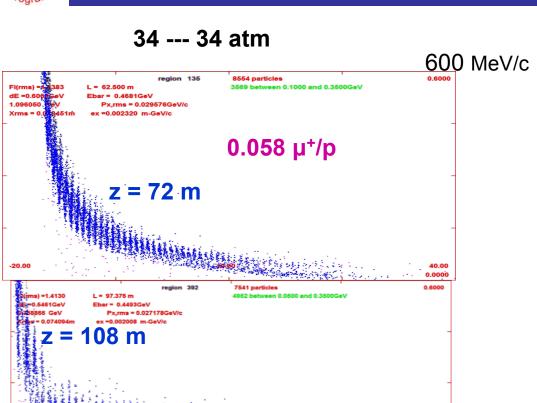

REF2

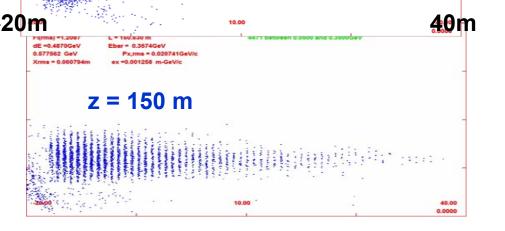
2 0.154 0. 6.9

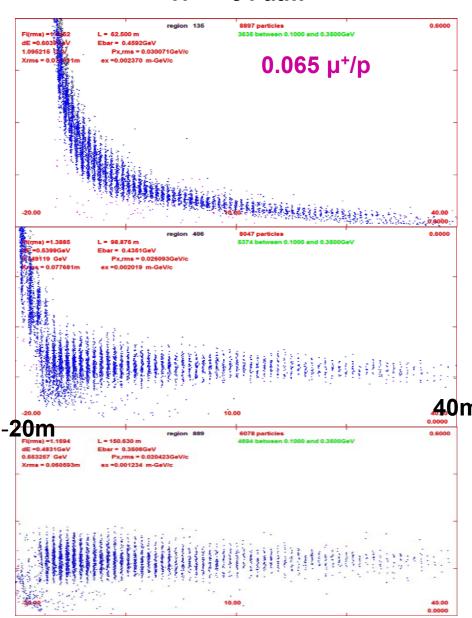
- use phase model 4
 - tracks reference particles energy loss in drft/absorber but not in rf
 - fixed energy gain.loss in rf
- ref particle acceleration fitted to end at ~245 MeV/c

FrontEnd variations


- > Reduce buncher gas to 17 atm
 - ~ 10% better
 - back to ~ baseline
 - ~0.062 μ⁺/p
- decelerating rotator or constant energy rotator?
 - $C \rightarrow \sim 0.063 \, \mu^{+}/p$
 - about the same
 - no real advantage/disadvantage in deceleration


- Note initial beam is "cooled", but only in one dimension
 - B = 2 T no field flip
 - Angular momentum increases


Z	ε _†	ℓ=L/2	ε,	ε_
59	0.018	4 0.0054	0.0246	0.0138
78	0,017	3 0.0059	0.0243	0.0124
10	2 0.015	1 0.0074	0.0242	0.0095


Compare 17/34

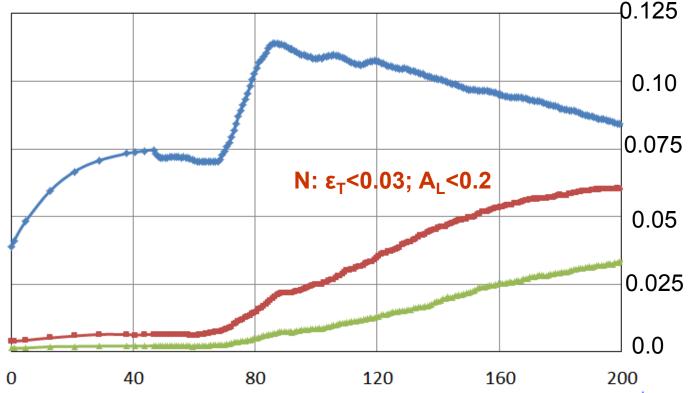
17 --- 34 atm

Increase rotator to 100atm

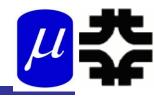
- Buncher at 17atm
 - LESS INITIAL LOSS
- \succ With V = 20/25/28
 - ~0.059 μ/p (C 6.75)
 - ~10% less than 17/34
- Increase Rotator gradient to 28 MV/m
 - to compensate energy loss
- > Fairly good performance
 - ~0.063 μ/p (C 6.75)
- > Buncher at 34 atm
 - ~0.058 μ/p (C 6.75)
 - V = 22/28/30 MV/m
 - worse than 17/100 case

- More cooling in Rotator
 - 1-D cooling (2T solenoid)
 - one mode highly damped
- Significant initiation of cooling
 - (integrating rotator/cooler)
 - shortens following cooler

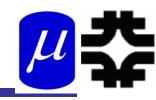
Z	ε _†	ℓ=L/2	ε,	ε_
77	0.0176	0.0061	0.0248	0.0124
89	0,0144	0.0077	0.0241	0.0087
102	0.0128	0.0088	0.0242	0.0066

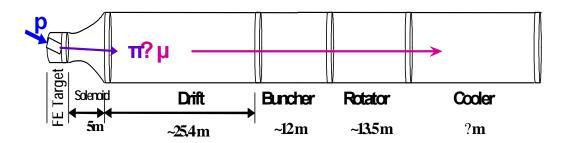


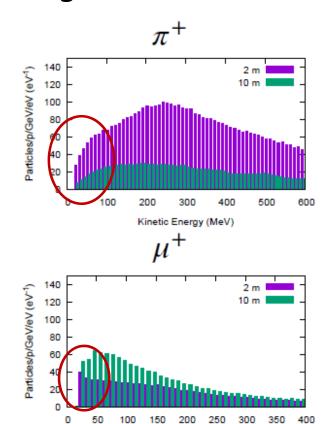
Beam difference notes


- Most of loss in intrinsic performance is from gas in buncher
 - Beam enters completely unbunched
 - Initial rf is weak; and slowly increases
- > After some initial loss, SIMILAR TO GAS-FREE BASELINE

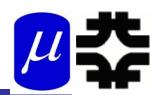
mu's within acceptances


Continue Cooling with H2 Gas


- > Previous cases used baseline front end cooling
 - 2 LiH 1.5 cm absorbers per cell
- > 240 atm of H₂
 - ~8.3 MV/m loss from gas
- > Preliminary results
 - Throughput improved to ~0.068 μ⁺/6.75 GeV proton C target

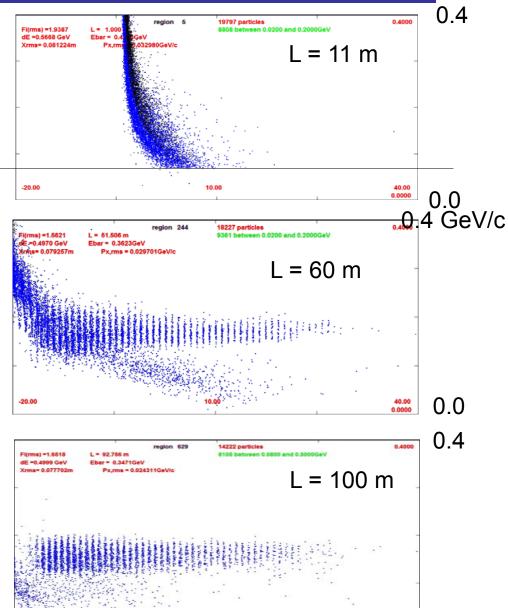

Low-E capture

- > Capture at low momentum
 - prepare beam for low-E µ experiment
- Somewhat scaled back version of front end
 - 30.4m drift
 - shorter buncher /rotator
 - 12 m / 13.5 m
 - $0 \rightarrow 15 \text{ MV/m}, 15 \text{ MV/m}$
 - vacuum rf
 - B=2T



- > Parameters
 - 150 MeV/c ... 100 MeV/c reference particles
 - 77.8 // 39.8 MeV
- Bunch to 150 MeV/c
- > Cooling at 2 T

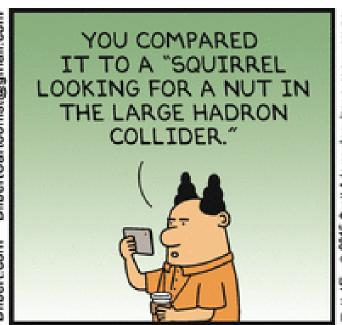
simulation of low-E buncher


- > Used Ding initial beam
 - initial beam cut off at ~70 MeV/c
 - 21 MeV kinetic energy
 - bunch train formed

longitudinal antidamping

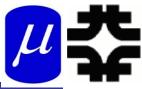
•
$$g_{L} = \sim -0.5$$

- B=2T, 2cm
- more used to separate captured from uncaptured beam
- ~0.05 μ/p within acceptance ??
 - not sure what acceptance criteria to use

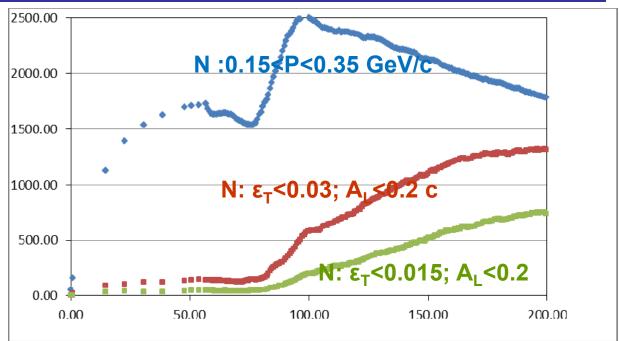

0.0

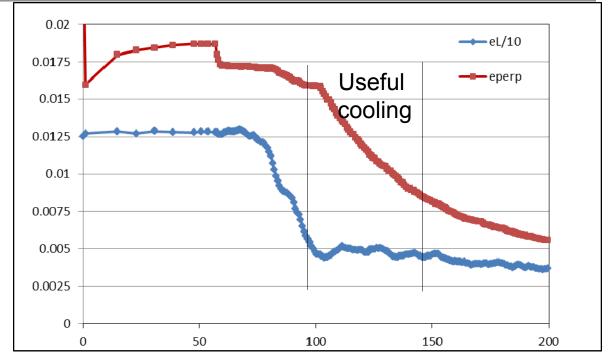


LHC discoveries motivate future research...



Simulation Results




> Simulation obtains

- ~0.125 µ/p within acceptances
- with ~60m Cooler
- 325 MHz less power
- shorter than baseline NF

> But

- uses higher gradient
- higher frequency rf → smaller cavities
- shorter than baseline NF
- more bunches in bunch train

