Status of Beta Beam R&D: Radioactive ion production

Etam NOAH (October 21, 2009)

On behalf of EURISOL-DS*/ISOLDE-CERN

Acknowledgements: Mats Lindroos, Thierry Stora, Elena Wildner and Beta-beam team

*Project supported by the European Commission under the FP6 "Research Infrastructure Action- Structuring the European Research Area" EURISOL-DS Project Contract no. 515768 RIDS

Status of Beta-Beam R&D

Outline

- Beta-beams:
 - Neutrino beams
 - EURISOL-DS beta-beam
- Ion production issues:
 - Production options
 - The ISOL method
 - Production and extraction of ⁶He
- EURISOL-DS 100 kW targets:
 - 100 kW liquid metal target
 - 100 kW oxide target

Introduction to beta-beams

Beta-beam proposal by Piero Zucchelli

- *A novel concept for a neutrino factory: the beta-beam*, Phys. Let. B, 532 (2002) 166-172.
- AIM: production of a pure beam of electron neutrinos (or antineutrinos) through the beta decay of radioactive ions circulating in a high-energy (γ~100) storage ring.

• First study in 2002

• Make maximum use of the existing infrastructure.

Beta-beam basics

Book: Beta Beams: Neutrino Beams, Mats Lindroos, Mauro Mezzetto, Imperial College Press (24 Sep 2009).

Aim: production of (anti-)neutrino beams from the beta decay of radio-active ions circulating in a storage ring

Similar concept to the neutrino factory, but parent particle is a beta-active isotope instead of a muon.

Beta-decay at rest

- v–spectrum well known from the electron spectrum
- Reaction energy Q typically of a few MeV
- Accelerate parent ion to relativistic γ_{max}
 - Boosted neutrino energy spectrum: $E_v \le 2\gamma Q$
 - Forward focusing of neutrinos: $\theta \le 1/\gamma$
- Pure electron (anti-)neutrino beam!
 - Depending on β^+ or β^- decay we get a neutrino or anti-neutrino
 - Two different parent ions for neutrino and anti-neutrino beams
- Physics applications of a beta-beam
 - Primarily neutrino oscillation physics and CP-violation (high energy)
 - Cross-sections of neutrino-nucleus interaction (low energy)

The Beta-beam Options

- Low energy beta-beams
 - Nuclear physics, double beta-decay nuclear matrix elements, neutrino magnetic moments
- The medium energy beta-beams or the EURISOL beta-beam
 - Lorenz gamma approx. 100 and average neutrino energy at rest approx. 1.5 MeV (P. Zucchelli, 2002)
- The high energy beta-beam
 - Lorenz gamma 300-500 and average neutrino energy at rest approx. 1.5 MeV
- The very high energy beta-beam
 - Lorenz gamma >1000
- The high Q-value beta-beam
 - Lorenz gamma 100-500 and average neutrino energy at rest 6-7 MeV
- The Electron capture beta-beam

The EURISOL-DS

100 kW direct targets

RIB production:

Spallation-evaporation

 Main: P-rich (10 to 15 elements below target material)

 Residues: N-rich (A few elements below target material)

Target materials:

- Oxides
- Carbides
- Metal foils
- Liquid metals

<u>Participants:</u> <u>~20 institutions</u> Contributors:

~20 institutions

<u>EU suport (~30%):</u> <u>~9.2 MEuros</u> Duration: 2005-2009

<u>12 Tasks</u>

mMW fission target

RIB production:

- Fission
- N-rich
- Wide range
 Z = 10 to Z = 60

Target material:

U (baseline)

Th

Converter:

Hg

Status of Beta-Beam R&D

The EURISOL Scenario

- Based on CERN boundaries
- Ion choice: ⁶He and ¹⁸Ne
- Relativistic gamma=100/100
 - SPS allows maximum of 150 (⁶He) or 250 (¹⁸Ne)
 - Gamma choice optimized for physics reach
- Based on existing technology and machines
 - Ion production through ISOL technique
 - Bunching and first acceleration: ECR, linac
 - Rapid cycling synchrotron
 - Use of existing machines: PS and SPS
- Opportunity to share a Mton Water Cerenkov detector with a CERN superbeam, proton decay studies and a neutrino observatory
- Achieve an annual neutrino rate of either
 - 2.9*10¹⁸ anti-neutrinos from ⁶He
 - Or 1.1 10¹⁸ neutrinos from ¹⁸Ne

Possible beta-beam complex

Detector in the Frejus tunnel

Choice of radioactive ion species

Beta-active isotopes

- Production rates
- Life time
- Dangerous rest products
- Reactivity (Noble gases are good)
- Reasonable lifetime at rest
 - If too short: decay during acceleration
 - If too long: low neutrino production
 - Optimum lifetime given by acceleration scenario
 - In the order of a second
- Low Z preferred
 - Minimize ratio of accelerated mass/charges per neutrino produced
 - One ion produces one neutrino.
 - Reduce space charge problem
- EURISOL choice in 2002
 - ⁶He to produce antineutrinos
 - ¹⁸Ne to produce neutrinos

$${}^{6}_{2}He \rightarrow {}^{6}_{3}Li \ e^{-}\overline{\nu}$$
Average $E_{cms} = 1.937$ MeV
$${}^{18}_{10}Ne \rightarrow {}^{18}_{9}F \ e^{+}\nu$$
Average $E_{cms} = 1.86$ MeV

Status of Beta-Beam R&D

Production of beta-beam isotopes

- The Isotope Separation On-Line (ISOL) method at medium energy
 - EURISOL type production, uses typically 0.1-2 GeV protons with up to 100-200 kW beam power through spallation, fission and fragmentation
- Direct production
 - Uses low energy but high intensity ion beams on solid or gas targets.
 Production through compound nuclei which forms with high cross section at low energies
- Direct production enhanced with a storage ring
 - Enhancing the efficiency of the direct production through re-circulation and reacceleration of primary ions which doesn't react in the first passage through the target.
 - Possible thanks to ionization cooling!

Intensities at source

Status of Beta-Beam R&D

- ISOL method at 1-2 GeV (200 kW)
 - >1 10¹³ ⁶He per second
 - <8 10^{11 18}Ne per second
 - ⁸Li and ⁸B not studied
 - Studied within EURISOL
- Direct production
 - >1 10¹³ (?) ⁶He per second
 - 1 10¹³ ¹⁸Ne per second
 - ⁸Li and ⁸B not studied
 - Studied at LLN, Soreq, WI and GANIL
- Production ring
 - 10¹⁴ (?) ⁸Li
 - >10¹³ (?) ⁸B

Design Study

- ⁶He and ¹⁸Ne not studied
- Will be studied in the future

^{Stored} ^{Stored} ^{Undy stripped} ^{Stored} ^{Undy stripped} ^{Stored} ^{Undy stripped} ^C. Rubbia, A Ferrari, Y. Kadi and V. Vlachoudis in NIM A 568 (2006) 475–487

The ISOL method

Typical target materials and RIBs

Status of Beta-Beam R&D

⁶He production at ISOLDE-CERN in 2009

Reaching required ion intensities

- ⁶He can be achieved:
 - Isotope production tested at ISOLDE
 - 1.3 10¹³ ⁶He/s 100 kW, 40 MeV deuteron beam
 - 2 10¹³ ⁶He/s 100 kW, 1 GeV proton beam
 - 10¹⁴ ⁶He/s 200 kW, 2 GeV proton beam
- ¹⁸Ne challenging:
 - ³He, 30 MeV, 200 mA direct on oxide target, 600 kW!
 - p, 70 MeV, 30 mA on Al_2O_3 target.

EURISOL 100 kW Direct Target Design

Status of Beta-Beam R&D

EURISOL 100 kW target baseline parameters

Parameter	Symbol	Units	Nval	Range
Target material	Z _{targ}	-	SiC, Ta, BeO, Pb (molten)	Be-U
Beam particles	Z _{beam}	-	Proton	Deuterium – ¹² C
Beam particle energy	E _{beam}	GeV	1	0.5 - 3
Beam current	I _{beam}	μA	100	100 - 1000
Beam time structure	-	-	dc	ac 50Hz 1ms pulse
Gaussian beam geometry	σ_{beam}	mm	7	3-20
Beam power	P _{beam}	kW	100	100-1000
Target thickness	X	g/cm 2	200	10-250
Target radius (cylinder)	r _{targ}	mm	$3\sigma_{beam}$	$3\sigma_{\text{beam}} - 5\sigma_{\text{beam}}$
Target temperature	T _{targ}	°C	2000	500-2500
Number of target containers	j _{targ}	-	4	1-10
Plasma ionization outlet diameter	Ø _{out}	mm	3	2-6

EURISOL 100 kW direct target issues

- Heat dissipation + target temperature profile optimisation are main drivers of 100 kW direct target design:
 - Uniform high temperature for fast diffusion and effusion
 - Avoid cold spots where isotopes could condense
 - Heat dissipation by conduction/thermal radiation T⁴
 - Compact target geometries to minimise effusion losses
- Solid targets: Oxides and Carbides
 - Oxides: thermal insulators (e.g. ThO₂ 0.4 W/mK @1673 K)
 - Relatively low operation temperature (e.g. CaO 1673 K)
 - Composite target pills
 - Multibody target concept + neutral beam merging
- Solid targets: Metal foils
 - Foil thickness optimisation for mechanical properties/diffusion
- Liquid metal targets:
 - Loop required to dissipate factor x20 more heat than can be accomodated classically
 - Diffusion chamber required to optimise release efficiency of shortlived isotopes

Multi-body target

Beam sharing between sub-units of one target station

Status of Beta-Beam R&D

EURISOL 100 kW target developments

High power oxide direct target prototype

Status of Beta-Beam R&D

Al₂O₃/Nb composite target

Final concept

Status of Beta-Beam R&D

AHIPA09 etam.noah@esss.se

S. Marzari

Differential dilatation Ta/Nb

Dilatation = f(T) [mm] for T Ta = T Nb-250°C

Status of Beta-Beam R&D

Differential dilatation Ta/Nb

Status of Beta-Beam R&D

Nb thickness choice

Power deposited by 10 kW beam in 1 composite pill, 1.0 mm thick Al_2O_3 brazed onto Nb, as a function of Nb thickness.

Design Study

Status of Beta-Beam R&D

etam.noah@esss.se

Al₂O₃ thermal conductivity

Power on sample = 28 W Beam spot < 8 mm Front = 1524 °C Back = 1432 °C

Status of Beta-Beam R&D

Brazing equipment

Status of Beta-Beam R&D

Brazing equipment

 Varying temperature and time to obtain the parameters for optimal brazing

Micron meter for dilatation monitoring

Brazed pills after final laser cutting

Status of Beta-Beam R&D

Al₂O₃ target final assembly

• During mounting we decide to replace the gap spacers for ring spacers

Average gap ~0.03 mm

Status of Beta-Beam R&D

March tests at TRIUMF: 12 kW

Status of Beta-Beam R&D

Direct liquid metal targets

- Today's state of the art [ISOLDE]:
 - Release fraction < 2% for short-lived Hg
 - Diffusion $\tau >> 10s$
 - Max. power deposition 1 kW !!!

Status of Beta-Beam R&D

100 kW liquid metal: loop for heat removal

- Loop=Target material: Pb, LBE
 - Operating temperature: 1100 K
 - ΔΤ: 100 Κ
 - Flow rate: 0.2 l/s
- Beam: 1 GeV H⁺
 - 100 μ A, σ_x/σ_y =0.3/0.7 cm
 - 30 kW deposited in target

Status of Beta-Beam R&D

Diffusion chamber concept

Status of Beta-Beam R&D

PbBi loop prototype at IPUL Latvia

Outlet

Status of Beta-Beam R&D

Diffusion chamber prototype at IPUL

PbBi 600°C

Status of Beta-Beam R&D

Diffusion chamber prototype at IPUL

PbBi 600°C

Status of Beta-Beam R&D

Summary

- The EURISOL-DS beta-beam:
 - Conceptual design report presented during 2009
 - High power target R&D for ¹⁸Ne required
 - Full converter-BeO target for ⁶He to be tested
- EUROnu DS, FP7 (2008-2012):
 - A beta beam facility using ⁸Li and ⁸B
 - Production issues (experience from EURISOL-DS)
 - Accelerator issues (duty factors, RF and bunch structures)
 - Costing
- Clear synergies with Radioactive Ion Beam facilities: SPIRAL2, HIE-ISOLDE phase 2 (100 kW), EURISOL

Back up

Status of Beta-Beam R&D

Radioprotection

Annual Effective Dose to the Reference Population (μ Sv)				
RCS	PS	SPS	DR	
0.67	0.64	-	5.6 (only decay losses)	

Stefania Trovati, Matteo Magistris, CERN

Yacin Kadi et al., CERN

Status of Beta-Beam R&D

Intensity evolution during acceleration

Cycle optimized for neutrino rate towards the detector

30% of first ⁶He bunch injected are reaching decay ring Overall only 50% (⁶He) and 80% (¹⁸Ne) reach decay ring

Normalization Single bunch intensity to maximum/bunch Total intensity to total number accumulated in RCS

Status of Beta-Beam R&D

Duty factor and Cavities for He/Ne

10¹⁴ ions, 0.5% duty (supression) factor for background suppression !!!

20 bunches, 5.2 ns long, distance 23*4 nanosseconds filling 1/11 of the Decay Ring, repeated every 23 microseconds

Erk Jensen, CERN

- Not conclusive yet only first ideas more work is needed!
- The heavy transient beam loading is unprecedented.
- Since there is no net energy transfer to the beam, the problem might be solved using a linear phase modulation in the absence of the beam, mimicking detuning – this could reduce gap transients.
- A high Q cavity (S.C.?) would be preferable.

Status of Beta-Beam R&D

Particle turnover in decay ring

Momentum collimation (study ongoing):

~5*10¹² ⁶He ions to be collimated per cycle

Decay: ~5*10¹² ⁶Li ions to be removed per cycle per meter

- Dump at the end of the straight section will receive 30kW
- Dipoles in collimation section receive between 1 and 10 kW (masks).

EURONU-DS Objectives

- A High Intensity Neutrino Oscillation Facility in Europe
 - CDR for the three main options: Neutrino Factory, Beta-beam and Super-beam
 - Focus on potential showstoppers
 - Preliminary costing to permit a fair comparison before the end of 2011 taking into account the latest results from running oscillation experiments
 - Total target for requested EU contribution: 4 Meuro
 - 1 MEuro each for SB, NF and BB WPs
 - 1 MEuro to be shared between Mgt, Phys and Detectors WPs
 - 4 year project which started 1st September 2008
- First EURONU Town meeting at CERN, 25-26 March 2009

Alternative ions

Table 2.1 Some possible isotopes which are β^- emitters, from [84]						
Isotope	A/Z	$T_{1/2}$	Q_β g.s. to g.s.	Q_{β} effective	E_{β} average	$E\nu$ average
		(s)	(MeV)	(MeV)	(MeV)	(MeV)
⁶ He	3.0	0.80	3.5	3.5	1.57	1.94
8 He	4.0	0.11	10.7	9.1	4.35	4.80
⁸ Li	2.7	0.83	16.0	13.0	6.24	6.72
⁹ Li	3.0	0.17	13.6	11.9	5.73	6.20
^{11}Be	2.8	13.8	11.5	9.8	4.65	5.11
^{15}C	2.5	2.44	9.8	6.4	2.87	3.55
^{16}C	2.7	0.74	8.0	4.5	2.05	2.46
^{16}N	2.3	7.13	10.4	5.9	4.59	1.33
^{17}N	2.4	4.17	8.7	3.8	1.71	2.10
^{18}N	2.6	0.64	13.9	8.0	5.33	2.67
23 Ne	2.3	37.2	4.4	4.2	1.90	2.31
25 Ne	2.5	0.60	7.3	6.9	3.18	3.73
25 Na	2.3	59.1	3.8	3.4	1.51	1.90
26 Na	2.4	1.07	9.3	7.2	3.34	3.81

Table 2.2 Some possible isotopes which are β^+ emitters, from [84]

Isotope	A/Z	$T_{1/2}$	Q_{β} g.s. to g.s.	Q_{β} effective	E_{β} average	$E\nu$ average
		(s)	(MeV)	(MeV)	(MeV)	(MeV)
⁸ B	1.6	0.77	17.0	13.9	6.55	7.37
^{10}C	1.7	19.3	2.6	1.9	0.81	1.08
^{14}O	1.8	70.6	4.1	1.8	0.78	1.05
^{15}O	1.9	122.	1.7	1.7	0.74	1.00
18 Ne	1.8	1.67	3.3	3.0	1.50	1.52
$^{19}\mathrm{Ne}$	1.9	17.3	2.2	2.2	0.96	1.25
21 Na	1.9	22.4	2.5	2.5	1.10	1.41
^{33}Ar	1.8	0.17	10.6	8.2	3.97	4.19
^{24}Ar	1.9	0.84	5.0	5.0	2.29	2.67
^{35}Ar	1.9	1.77	4.9	4.9	2.27	2.65
^{37}K	1.9	1.22	5.1	5.1	2.35	2.72
80 Rb	2.2	34	4.7	4.5	2.04	2.48

Baseline options: Detectors

 $\begin{array}{c} Pilar \ Coloma \\ Optimization \ of the \ Two-Baseline \ \beta-Beam \end{array}$

Status of Beta-Beam R&D

⁶He production from ⁹Be(n, α)

- Converter technology preferred to direct irradiation (heat transfer and efficient cooling allows higher power compared to insulating BeO).
- ⁶He production rate is ~2x10¹³ ions/s (dc) for ~200 kW on target.

Status of Beta-Beam R&D

Direct production: ¹⁶O(³He,n)¹⁸Ne at LLN

- Production of 10^{12 18}Ne in a MgO target:
 - At 13 MeV, 17 mA of ³He
 - At 14.8 MeV, 13 mA of ³He
- Producing 10^{13 18}Ne could be possible with a beam power (at low energy) of 1 MW (or some 130 mA ³He beam).
- To keep the power density similar to LLN (today) the target has to be 60 cm in diameter.

etam.noah@esss.se

Status of Beta-Beam R&D

Light RIB production: 40 MeV Deuteron beam

- T.Y.Hirsh, D.Berkovits, M.Hass (Soreq, Weizmann I.)
- Studied ⁹Be(n,α)⁶He, ¹¹B(n,α)⁸Li and ⁹Be(n,2n)⁸Be production
- For a 2 mA, 40 MeV deuteron beam, the upper limit for the ⁶He production rate via the two stage targets setup is ~6.10¹³ atoms per second.

A new approach for the production

Beam cooling with ionisation losses – C. Rubbia, A Ferrari, Y. Kadi and V. Vlachoudis in NIM A 568 (2006) 475–487

See also: Development of FFAG accelerators and their applications for intense secondary particle production, Y. Mori, NIM A562(2006)591

Status of Beta-Beam R&D

Bivalve

Bivalve: merging of a double-transfer line system into a single FEBIAD ion source: Elian Bouquerel.

Design Study

etam.noah@esss.se

Proton beam to ISOLDE

Status of Beta-Beam R&D

Design Study

etam.noah@esss.se