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Solid spallation targets produce higher neutron
fluxes than liquid metal targets

* Neutron flux ~ neutron production density
e Neutron production density ~ mass density

 Mass densities (g/cc):
— Tungsten: 19.3
— Liquid Hg: 13.6
— Liquid Pb-Bi: 10.5

e So long as solid target coolant volume fraction in a
tungsten target is less than 30%, solid tungsten targets
will generate equal or greater neutron flux than liquid
metal targets
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A tungsten target with heat flux up to 600
W/cm? can be cooled by water

* For single-phase D,O:

— 10 m/s bulk velocity in Imm gap

— 70 pA/cm? beam current density on 4.4-mm-thick W plate
produces 600 W/cm? at each cooled face

— A 1-mm gap cooling each 4.4-mm tungsten plate gives a coolant
volume fraction of 19% and an average mass density of 15.9 g/cc

— Neutron production density of this high-power target is
— 15.9/13.6 = 17% greater than Hg
— 15.9/10.5 = 51% greater than Pb-Bi
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An experiment was conducted to validate the
target thermal-hydraulic performance

Copper Test Section

Surface Heat Flux \
Peak ~600 W/cm?2 >
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Channel
Flow Rate
10 m/s

Cartridge
Heaters

Cartridge heaters in tapered copper
block will simulate beam spot heat
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Thermal-hydraulic experiments using water
coolant confirm heat-transfer correlations
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Experimental results match test data using
Handbook heat transfer coefficient
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For both liquid & solid targets, the target lifetime
IS [imited by damage to the target front face

e EXxperience base:
ISIS (§S316 front face): 3.2x10%! p/cm? = 10
dpa
SINQ (Pb-filled SS316 tubes): 6.8x10%1 p/cm? = 22 dpa

MEGAPIE (T91 LBE container): 1.9x10%! p/cm? = 6.8 dpa
LANSCE A6 degrader (Inconel 718): 12 dpa
SNS first target container (SS316L): 7.5 dpa

MTS design, annual dose (70 uA/cm? for 4400 hours):
(T91-clad tantalum front face): 6.9x1041 p/cm? = 23 dpa
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Rotating solid targets:

What goes around comes around

German SNQ Project rotating target
prototype (circa 1985)

» Los Alamos

= o Rotating target distributes:

— radiation damage to the
target front face over larger
area
=» longer service life

— Energy deposition over a
larger volume, which
reduces coolant volume
fraction
=>» higher n prod density

— Decay heat over a larger
volume
=>» possibility to passively
cool under design basis
accidents
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Environment and safety issues: solid vs. liquid

e Decay heat ~ beam power

* Liquid metal targets distribute the decay heat within the
total liquid metal volume, typically ~100x larger than solid
target volume
=>»liquid metal targets have ~2 orders of magnitude lower

decay heat than solid (stationary) targets

e QOver the life of the facility, the waste volume is roughly
the same for all targets, liquid metal and solid (both
stationary and rotating)

* For most countries, the disposal of activated Hg is more
challenging than W or Pb
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Towards higher beam power:
Which is better—more energy or more current?

 Above ~800 MeV, target
] peak power density

1 increases with beam

1 energy

* Addressed by:

— Higher coolant volume
fraction for solid targets
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Towards higher beam power:
Which is better—more energy or more current?

 If target lifetime and
coolant volume
fraction Is
preserved, higher
beam current
requires larger
beam spot

MTS Beam Footprint on Target
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Peak neutron flux goes as Py ,,°°
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Summary

* A water- or metal-cooled stationary solid target is viable
beyond 1 MW

— Solid targets have higher neutron production density than liquid
metal targets

— Replacement frequency is determined by target front face
radiation damage, and is therefore the same as for a liquid metal
target container if the beam current density is the same

— A rotating solid target will have much longer lifetime than
stationary targets

e Target “performance” ~ (beam power)°8

— Does not depend strongly on whether the power increase comes
from higher current or higher energy

/\

- Los Alamos —
AHIPA Workshop, Fermilab, October 20, 2009 13 NI A4




