

Project X and a Muon Facility at Fermilab

Milorad Popovic FNAL

FermilabTevatron Accelerator With Main Injector

Proposed 8-GeV Implementation Plan

- Introduction
- Layouts and Beam Transfer Schemes
 - Booster Era
 - Project X Era (Beam Power = 200 kW @ 8 GeV)
 - Upgraded (4MW) Project X
- Experiments
 - Configurations
 - Proposed Locations
 - Beam Requirements
 - Providing the required proton time distributions

Experiments and Their Requirements

- Various groups would like to do experiments made possible by intense 8-GeV proton beams:
 - Muon-to-electron conversion
 - Muon g-2
 - K-> $\pi \vee \underline{\nu}$ (with neutral and charged kaons)
 - Muon test beams
 - Neutrino factories based on muon storage rings
 - Muon colliders
 - Accelerator physics research and development
- We've been communicating with them to understand their needs.
 - Most want to start ASAP.
 - Many want a phased approach to high beam power.
 - Various time distributions are desired for proton beam.

Advantages of the Proposed Plan

- It's flexible.
 - Experiments can start with Booster beam, then transition to beam from Project X without relocating.
 - Beam time can be shared flexibly.
- It's economical.
 - Existing infrastructure is intensely used.
 - Only one new tunnel for starters, a short one at that
 - Only one new high-power target station/exp't hall
 - All (or most?) 1st-round experiments located in one area
- It can be implemented rapidly.
 - The new tunnel could be built soon as an AIP project.
- It provides a path back to the energy frontier.
 - Target station is located in line with a long-term plan

MI and RR time lines for NOvA

The Recycler is empty for as many as 8 Booster ticks.

The proposed beam path, 8GeV Protons

The cheapest route between two rings is via existing beam lines.

g-2 Beam Delivery Concept

Timing Diagram/Beam Delivery to mu2e

- Take 2 cycles at time from Booster (thru Recycler)
 - stack in Accumulator
 - (^33ms)
- Form into 4 bunches
 - ~33ms
 - 1 bunch at time transfers to Debuncher
- Stretch Debuncher to slow extraction over 66ms
 - -2.4×10^{12} / bunch
 - $(\delta v < 0.02)$
- Use Recycler to accumulate Booster cycles
 - 12/20 to NuMI (1.33s)
 - 8/20 to mu2e
 - (16/20)duty cycle

$\mu 2$ e Beam Delivery Concept

Recent documentation (note contributors)

Delivering Protons to the Antiproton Source after the Tevatron Collider Era

Charles Ankenbrandt, David Harding, David Johnson, David McGinnis, and Milorad Popovic Fermilab

March 6, 2007

. . .

Communications with Dixon Bogert, Bruce Brown, Steve Geer, Nancy Grossman, Dave Neuffer, and Eric Prebys contributed to the development of the ideas presented here.

Second Project X Physics Workshop

Proposed Implementation Plan

for Physics with Intense 8 GeV Proton Beams

after the Tevatron Collider Era

(A Tunnel Vision)

Chuck Ankenbrandt and Milorad Popovic Fermilab January, 2008

Booster-era Beam Transfer Scheme

New 200-kW target station that can be upgraded to >2 MW

Ankenbrandt and Popovic, Fermilab

2 MW Target Station for v Factory or Muon Collider

2 MW Target Station for v Factory or Muon Collider

4 MW Target Station for v Factory or Muon Collider

Beam Path to 200kW target station in Project X Era

Sitting of mu2e, g-2, Kaons, μ test area, 4GeV ν Factory

Path of Beams to 4 GeV v Factory in Project XLR8 Era

Neutrino Factory as 1st Step Toward Muon Collider

Proton Accumulation, Bunching Ring, 10 bunches

Muon Collider Stage

Stop here

Rare Kaon Decay Experiments

BNL Charged K+ Beamline shown below, New design for JPARC is 11m in length.

Target station will be 3m×3m×3m followed by a beam line for the Fermilab experiment of (3m×3m transverse) × 11m longitudinal.

January 14th 2008.

R. Tschirhart - Fermilab

BNL E787/E949: Stopping K+ Experiment. Next generation experiment at Fermilab would be about half of the radius.

Detector at Fermilab will be (2mx2mx2m) which can fit into a 3mx3m transverse hall.

Neutral Kaon "KOPIO" like beam line space requirements....

X angular space for Fermilab experiment will be closer to the the Y angular space.

Target station will be $3m \times 3m \times 3m$ followed by a beamline that is $(2m \times 2m \text{ transverse}) \times 10m$ longitudinal length.

Neutral Kaon "Kopio" like detector space requirements....

Transverse (elevation view) dimensions: 5mx5m maximum.

Longitudinal (plan view) dimensions: $10m (of 5m \times 5m) + 10m (of 3m \times 3m)$

Rare K Decay Experiment Requirements

- Beam Power
 - Booster era: ~ 25 kW
 - Project X era: 200 kW or even more
- Proton time distribution for KOPIO-like experiment
 - Slow spill with high duty cycle
 - Bunch length <~ 300 psec (the shorter the better)
 - Bunch separation ~ 40 nsec
- (Charged K exp't can use KOPIO beam time structure)
- Creating the proton distribution in the Booster era
 - Momentum-stack three Booster batches in the Accumulator
 - Rebunch at ~26.4 MHz
 - Single-turn transfer all 42 bunches to the Debuncher
 - Add high-frequency rf harmonics of 26.4 MHz to ring voltage
 - Resonantly extract from the Debuncher

Providing Proton Bunches for a Neutrino Factory or a Muon Collider

8 GeV LINAC

Booster-Era Beam Timelines for mu2e Experiment

07/24/2009