Review of WAMSDO 2011workshop: Superconductors in LHC Upgrade (HiLumi LHC)

René Flükiger, Gijs DeRijk

CERN TE- SC-SCD

Scope of the meeting

- Attempts to characterize the HL-LHC radiation environment for the cables (superconductor and insulator) of the most exposed magnets: the quadrupoles of the final focus triplet
- These quadrupoles are most exposed to the collision debris, for a target integrated luminosity of 3'000 fb⁻¹ at 14 TeV center-of-mass energy

WAMSDO Workshop Program

I. Irradiation of superconductors

- * Nb₃Sn, Coated Conductors (magnets)
- * MgB₂ (LINK current leads)
- * Superconducting and mechanical properties

II. Calculations

- * Modern models/codes including Coulomb elastic scattering, nuclear interactions and DPA model parameters
- * FLUKA an MARS results on energy deposition and DPA values

III. Irradiation of Insulators

* Radiation effects on fusion magnet components * Mechanical properties of insulators (including EuCard data) will be discussed by M. Eisterer

HL-LHC: The basis for model calculations Francesco Cerutti, CERN

Particle spectra in the coils

Particle spectra in the inner coil (upper coil) in Q2a (at peak location, i.e. 15 cm from magnet beginning)

Particle spectra in the coils

Particle spectra in the inner coil (upper coil) in Q2a (at peak location, i.e. 15 cm from magnet beginning)

Neutron fluence in the inner winding of Quadrupoles (LHC Upgrade)

Preliminary FLUKA calculations (without cold shielding)

Francesco Cerutti

Track length fraction [%]				
photons	88			
electrons/positrons	7			
neutrons	4			
pions	0.45			
protons	0.15			

Over the HL-LHC target integrated luminosity (3000 fb⁻¹),

triplet quadrupole cables and insulators will undergo the following radiation peak values:

- ~ 100 MGy (dose)
- ~ 10⁻⁴ (DPA),
- ~ 1.5 x 10^{17} neutrons/cm²
- ~ 10¹⁶ pions/cm²

F. Cerutti

I. Irradiation of superconductors

Radiation effects on superconductors in ITER

Irradiation of MgB₂

Irradiation experiments at BNL

Neutron Irradiation Measurements for Superconducting Magnet Materials at Low Temperatures

What do we need?

Harald Weber

Marina Putti

Peter Wanderer

Tatsuchi Nakamoto

René Flükiger

Neutron Irradiation of superconductors

Radiation will affect

INCOMPARIATION STATUS NUMBER INCOMPARIATI NUMBER INCOMPARIATION STATUS NUMBERIATION STATUS NUMBERIATIUS NUMBERIATIUS NUMBERIATIUS NUMBERIATIUS NUMBERIATIUS NUMBERIATIUS

- through disorder: 🖙 unlikely in alloys

effective in metals and ordered compounds

\boxtimes NORMAL STATE RESISTIVITY ρ_n

- through the introduction of additional scattering centers

very small in alloys

significant in metals and ordered compounds

☑ UPPER CRITICAL FIELD H_{c2}

- through the same mechanism: $\rho_n \propto 1/\ell \propto \kappa \propto H_{c2}$

CRITICAL CURRENT DENSITY J_c

- through the production of pinning centers

Variation of T_c in neutron irradiated multifilamentary Nb₃Sn wires

F. Weiss, R. Flükiger, W. Maurer, IEEE Trans. Magn., MAG-23(1987)976

Binary Nb₃Sn wire (10'000 filaments)

REMM'12, Fermilab, 13.-15.2.12

F. Weiss et al. IEEE Trans. 12 Magn., MAG-23(1987)976

Binary and ternary alloyed Nb₃Sn wires (bronze route)

REMM'12, Fermilab, 13.-15.2.12

Alloyed Nb₃Sn wires: J_c more sensitive to irradiation

Wire	$\phi t_{maximum}$
Binary Nb ₃ Sn wire	8 x 10 ¹⁷ n/cm ²
Ti alloyed Nb ₃ Sn wire	1.5 x 10 ¹⁷ n/cm ²
Ta alloyed Nb ₃ Sn wire	1.5 x 10 ¹⁷ n/cm ²⁵

- 2) At ϕt_m the increase $\Delta(|_c/|_{co})$ and $\Delta(B_{c2})$ is lower for alloyed Nb₃Sn wires
- 3) At φt = 5 x 10¹⁷ n/cm²: I_c/I_{co} for binary Nb₃Sn wire higher than before irradiation but: I_c/I_{co} for alloyed Nb₃Sn wires similar than before irradiation

Neutron Irradiation at KUR Kyoto Univ. Reactor)

Tatsuchi Nakamoto

- 5MW max. thermal power
- Irradiation cryostat close to reactor core
- Sample cool down by He gas loop: 10K 20K
- Fast neutron flux (En>0.1MeV): 1.4x10¹⁵ n/m²/s@1MW

Fig. 15 Neutron energy spectrum in LTL of KUR for ordinary core (above 1000 eV) KUR-TR287 (1987)

M. Okada et al., NIM A463 (2001) pp213-219

Volume expansion of irradiated Nb₃Sn

Volume expansion in irradiated Nb₃Sn

Scaling law between various sources not yet investigated

At 5 x 10²¹ n/m², close to the maximum of J_c vs. Φt , the volume expansion of Nb₃Sn is $\approx 0.5\%$. Does this have effects on the internal stresses, and thus on J_c , the wires being encapsulated?

Effect of irradiation on Cu stabilizer

Normal state resistivity essential for stabilization and quench protection

In-field resistivity experiments on copper

Irradiation *must* be done at low temperature (~ 5 K) due to substantial annealing

(most low temperature irradiation facilities have been shut down, only one 14 MeV source available in Japan)

Why is ρ of Stabilizer Important? >> very concerned with quench protection.

• MIITS:
$$\int_{t_{quench}}^{t_{end}} I^2 dt = \int_{T_0}^{T_{max}} \frac{C_p A}{\rho / A} dT$$

• ρ increase \rightarrow temperature increase

Neutron irradiation test for stabilizers (copper, aluminum) is undoubtedly necessary.

minimum fluence to start of degradation anneal effect on recovery R&D of witness sample for the operation

- Resistivity measurement at 10 K
- Neutron irradiation at the IPNS spallation source at 5 K
- Warm-up cycle to RT
- Resistivity measurement at 10 K

Multifilamentary NbTi-conductors

#34: RRR ~ 60 #35: RRR ~ 120 #36: RRR ~ 120

Resistivity increase : factor ~1.3 at 1 x 10²² n/m²

Resistivity increase : factor ~1.3 at 1 x 10²² n/m²

T. Nakamoto

Matariala	Aluminum				Copper		
Materials	Horak	Guinan	Present	Present	Horak	Guinan	Present
RRR	2286	74	450	3007	2280	172	319
T _{irr} (K)	4.5	4.2	12	14	4.5	4.2	14
Netutron Source	Reactor	14 MeV	Reactor	Reactor	Reactor	14 MeV	Reactor
Φ _{tot} (n/m²) (>0.1MeV)	2 x 10 ²²	1-2 x 10 ²¹	2.3 x 10 ²⁰	2.7 x 10 ²⁰	2 x 10 ²²	1-2 x 10 ²¹	2.7 x 10 ²⁰
Δρ _{irr} / Φ _{tot} x10⁻ ³¹ (Ωm³)	1.9	4.09	2.4	2.4	0.58	2.29	0.82
Recovery by thermal cycle	100%	100%	100%	TBD	90%	80%	TBD

- Degradation rate ($\Delta \rho_{irr} / \Phi_{tot}$) seems to be higher in 14 MeV neutron irradiation. Evaluation using a common index such as DPA would be necessary.
- Present work shows that difference in RRR of Al doesn't influence the degradation rate.
- For copper, degradation rates ($\Delta \rho_{irr} / \Phi_{tot}$) are ranged from 0.58 to 2.29 10⁻³¹ Ωm^3 . What if SC cables with the initial RRR of 200 are irradiated to 10²⁰ or 10²¹ n/m²?
 - 10^{20} n/m^2 : RRR of 160 190
 - 10^{21} n/m^2 : RRR of 50 120
- REMM'12, Fermilab, 13.-15.2.12
 Recovery by annealing in copper sample and its multiple irradiation are planned in 2012.

Superconductors for operation at higher temperatures and/or higher magnetic fields

1) $MgB_2 (T_c \sim 39 \text{ K})$:

Low temperature (10 – 20 K) and intermediate field (< 10 T) application Possibly: LINK Current leads for HL-LHC

 2) Bi-2212 (T_c ~87 K): Fields up to 25 K at ≤ 4.2K Only HTS conductor with round cross section Difficult fabrication: needs to be improved

 3) RE-123 (T_c ~92 K): Fields > 25 T at 4.2K possible
 Very high costs, cables applicable in quadrupoles?

MgB₂ wires

- Higher field applications only at lower T
- Production of ~1 km long wires: ex-situ ok, in-situ improving, many suppliers

Critical Current Densities of MgB₂ at 4.2 K

Sufficient current densities only at fields below ~ 10 T Envisaged for LINK high current leads in HL-LHC Low cost alternative at low temperatures (< 10 K, PF coils) ?

Pinning mechanism

The shift of the F_P peak means that a new pinning mechanisms is working

Similar behaviour was observed in Nb₃Sn wires

H_{c2} in neutron irradiated MgB₂

HTS Superconductors

Coated Conductors by (EHTS)

- Substrate: Cr-Ni stainless steel
- Buffer stack: Y₂O₃/YSZ/CeO₂
 - YSZ: Ion beam assisted deposition (IBAD)
- YBCO (2.5 μm)
 - Pulsed-laser-deposition (PLD)
- Silver or gold protection layer
 - Vapor deposition
- Stabilization: Copper (~17 μm)
 - Galvanic plating process
- Total thickness: 0.120 mm $\rightarrow J_c/J_e = 50$

Coated Conductors: Critical Current Densities

H. Weber, M. Eisterer

Neutron irradiation effects on J_c for fields // c: AMSC

- Decrease of J_c at low fields
- Increase of J_c at higher field
- The crossover indicates a change in flux pinning

H. Weber, M. Eisterer

Conclusions for neutron irradiated materials

- LT Superconductors: No problems regarding radiation effects expected in HL-LHC
- Stabilizer: Degradation must be kept in mind
- HTS:

Substantial R&D still required Problems: Bending of roebled HTS cables High costs

Effect of various radiation sources on superconductors

From the present knowledge:

- **Neutrons :** Strong source of damage for superconductors
- **Protons:** From known data, even stronger effect (charge)
- **Pions:** Nothing is known yet. Effects expected to be comparable to those of protons (charges +/-)
- Electrons: Very little is known. Much smaller effects expected More data needed
- **Photons:** Nothing is known. Much smaller effects expected. (in contrast to insulators). Data needed

Keep in mind:

- * all high energy sources act simultaneously
- * there is no experience on a combined effect of several high energy sources
- * subsequent irradiations with different sources should be carried out on selected samples
 - * calculations must be carried out to study combined irradiations
 (taking into account the small values of DPA (~ 10⁻⁴), this
 may be reasonable)

The effect of proton irradiation on Nb₃Sn (thin films)

Pion irradiations: fluxes presently not sufficient for reaching J_c /J_{co}(max) In reasonable times → Calculations!

Maximum of I_c after proton irradiation

Binary Nb ₃ Sn wires (and films):					
Maximum of I _c : neutrons: 2 x 10 ²² n/m ²					
	protons: <mark>6 x 10</mark> 20 p/m ²				
Ternary alloyed Nb ₃ Sn wires:					
Maximum of I _c : neutrons: 3 x 10 ²¹ n/m ²					
	protons: ?				

Still necessary to know behavior after proton irradiation, in spite of 4% fluence with respect to neutrons !

Even more necessary: behavior under pion irradiation. Total damage of protons + pions is expected to be comparable or higher to that caused by neutrons

Ongoing proton irradiations at Kurchatov Institute:

- **Duration**: 24 months **Proton energy: 35 MeV Temperature: 300K (+ heating due to proton impact)** Maximum fluence: 1x 10²² p/m² J_c by magnetization measurements*)**) Tasks on irradiated wires: Electrical resistivity vs. T T_c TFM Lattice parameters Tasks on irradiated bulks: Long range atomic order parameter*) **Calculations:** dpa calculations for proton irradiation Measurements will be performed at CERN
- **) Transport J_c on proton irradiated wires: will be done later

Also presented at WAMSDO2011:

II. Calculations

Particle Fluences on LHC magnets

Francesco Cerutti

Exploring Parameter Space for Radiation Nikolai Mokhov Effects in SC Magnets

Peak fluence in the coils

F. Cerutti

Preliminary FLUKA calculations (without cold shielding)

Francesco Cerutti (at the beginning of this talk)

Track length fraction [%]				
photons	88			
electrons/positrons	7			
neutrons	4			
pions	0.45			
protons	0.15			

Over the HL-LHC target integrated luminosity (3000 fb⁻¹),

triplet quadrupole cables and insulators will undergo the following radiation peak values:

- ~ 100 MGy (dose)
- ~ 10⁻⁴ (DPA),
- ~ 1.5 x 10²¹ neutrons/m²
- ~ 10²⁰ pions/m²

BENCHMARKING VS FIRST LHC EXPERIENCE [II]

stable collisions in P1 at 7 TeV center-of-mass on 2010 Oct 28

- Relative pattern well reproduced, some discrepancies can be ascribed to missing geometry details (lessons learned from wire scanner simulations)
- Systematic offset to be understood, possible source of differences could be normalization (luminosity, total cross section), ...

F. Cerutti

Displacement per atom (DTA)

Deterioration of critical properties of crystalline materials under irradiation is usually analyzed as a function of displacements per atom (DPA). The latter is a strong function of projectile type, energy and charge as well as material properties including its temperature.

Non-ionizing energy loss (NIEL)

The non-ionizing energy loss (NIEL) is a quantity that describes the rate of energy loss due to atomic displacements as a particle traverses a material.

The product of the NIEL and the particle fluence (time integrated flux) gives the displacement damage energy deposition per unit mass of material.

DPA/NIEL vs Particle Type & Energy in Si

DPA Model in MARS15 (in one slide)

Norgett, Robinson, Torrens (NRT) model for atomic displacements per target atom (DPA) caused by primary knock-on atoms (PKA), created in elastic particle-nucleus collisions, with sequent cascades of atomic displacements (via modified Kinchin-Pease damage function v(T)), displacement energy T_d (irregular function of atomic number) and displacement efficiency K(T).

All products of elastic and inelastic nuclear interactions as well as Coulomb elastic scattering of transported charged particles (hadrons, electrons, muons and heavy ions) from 1 keV to 10 TeV. Coulomb scattering: Rutherford cross-section with Mott corrections and nuclear form factors for projectile and target (important for high-Z projectiles and targets, see next two slides).

LHC IR5 MARS15 Model

REMM'12, Fermilab, 13.-15.2.12

Triplet MARS15 Model

N. Mokhov

FLUKA 2006.3 and MARS15 (2007): Intercomparison

Total heat loads in the insertion region elements (W) for upgrade luminosity L=10*L0						
					Ratio	
	FLUKA	+/- (%)	MARS	+/- (%)	FLUKA/MARS	
TAS	1853.7	0.5	1827.3	0./	1.01	
Beam pipe	89.1	1.0	97.9	0,4	0.91	
Q1 cable	158.0	0.6	159.1	0.2	0.99	
yoke	96.3	0.9	78.5	0.4	1.23	
aluminium layer	2.3	0.6	2.4	0.5	0.98	
mylar insulation	19.5	0.8	20.4	0.3	0.96	
stainless steel vessel	16.8	0.8	17.3	0.3	0.97	

DPA

Mean Energy, Flux and DPA averaged over 4 Hot Spots (L, R, T, B)						
Particle j	<e> (GeV)</e>	RMS (GeV)	Flux (cm ⁻² s ⁻¹)	DPA/yr	DPA (%)	
р	2.93	10.7	1.3e8	1.75e-5	5	
n	0.22	3.7	2.3e9	8.24e-5	26	
р, К	13.8	41.6	5.4e8	4.78e-5	15	
m	11.3	19.7	6.3e5	1.70e-9	-	
g	0.018	0.35	8.6e10	~2.e-5	6	
е	0.077	0.5	9.8e9	2.47e-5	8	
Sub-thresh.					40	

Sub-thresh.: particles with E<100 keV + all fragments

N. Mokhov

Summary (calculations)

- Independent FLUKA and MARS results on energy deposition (mostly from EMS) for inner triplet coils are in agreement within a few %, therefore one can predict dose in insulator with same accuracy.
- Uncertainties on DPA predictions in superconductors can be as high as a factor of 2 to 3.
- MARS15 results are obtained on composition of particle flux and DPA in the hottest spots of the final focus quadrupole superconducting coils.
- The major contributors to DPA are sub-threshold particles (40%), neutrons > 100 keV (26%) and pions (15%).

Estimated total peak fluence in LHC (3'000 fb⁻¹)

Taking into account

- the calculations
- the observed difference between neutron and proton irradiation effects (factor ≤ 30 between fluences at J_c/J_{co} for 1 MeV)
- the smaller, but not negligible effect of electrons and photons (which have considerable DPA)
- Estimated total peak fluence, comprising neutrons and charged particles (protons and pions) is equivalent to the known effects of neutron fluence between 3x10²¹neutrons/m² and >5x10²¹ neutrons/m²

Reduction of lifetime of quadrupoles