Beam Test Possibilities in Japan

Tatsushi NAKAMOTO KEK

Necessary Irradiation Source

Mean Energy, Flux and DPA averaged over 4 Hot Spots (L, R, T, B)						
Particle j	<e> (GeV)</e>	RMS (GeV)	Flux (cm ⁻² s ⁻¹)	DPA/yr	DPA (%)	
P	2.93	10.7	1.3e8	1.75e-5	5	
n	0.22	3.7	2.3e9	8.24e-5	26	
π, Κ	13.8	41.6	5.4e8	4.78e-5	15	
μ	11.3	19.7	6.3e5	1.70e-9	-	
γ	0.018	0.35	8.6e10	~2.e-5	6	
e	0.077	0.5	9.8e9	2.47e-5	8	
Sub-thresh.					40	
Sub-thresh = j-particles with E<100 keV + all fragments						
WAMSDO 2011, CERN, Nov. 14, 2011 Exploring Parameter Space in SC - N.V. Mokhov					25	

IT Quads. for HL-LHC

- Mean energies of the particles are rather higher.
- Effect of pions, kaons, muons. fragments?
 - **→** NO (a few?) facilities to simulate the radiation parameters perfectly.

Facilities for Materials Irradiation

- Sources of irradiation for SC magnet materials
 - Neutrons: Nuclear reactors (> 0.1 MeV), 14 MeV n by DT
 - Protons: Accelerators
 - Electrons: Accelerators
 - Gamma rays: ⁶⁰Co , etc
 - Pions: ???
 - Ions (high energy): ???
- Some Requirements
 - Sample size (irradiation area): > 10 mm*10 mm, t > 1 mm
 - \rightarrow Criteria(?): $E_p > 10$ MeV, $E_e > ^MeV$
 - Spatial uniformity: function of scanning in accelerators.
 - Fuence or absorbed dose in acceptable machine time: 10^{22} p/m², > 10 MGy
 - Sample environment: temperature, ambient gas or vacuum
 - **→** Trade-off: irradiation temperature or fluence
 - Allowable limit of radioactivity
 - Evaluation apparatuses

Fukushima Daiichi Nuclear Power Plant

- •Facilities in East Japan were damaged by the earthquake at March 11, 2012.
- •But most of them have been recovered.

JAEA Tokai: Tandem Accelerator

- Operation restarted at Sep. 2011.
- Proton: 1 μA at 33 MeV, 1.5 μA at 15 MeV.
- Other ions acceleration by booster is possible.
- Scanning by electro static deflectors (x-y) at R2 beam line: 10 x 10 mm²
- Allowable unsealed radioactivity: 1 MBq for usual nulclides.

Usage Fee: 50 kJYen/d

JAEA Tokai: Tandem Accelerator(2)

Electrostatic deflectors:

10mm x 10mm

suppressed. Pumping near samples could be needed.

Cooling of samples: water, gas flow...

JAEA Tokai: FNS (Fusion Nutronics Source)

- 14 MeV neutron from DT reaction.
- Production rate: 10¹² n/sec at 10 mA, 10¹⁵ n/m²s at 1 cm from target.
- 1 cycle: 7 hrs x 4 days. 4 cycles per year. >> 112 hrs only!!
- Repair work is being carried out. Operation for users will be started in 2012.
- New tritium target was successfully developed by JAEA. D beam intensities will be doubled.
- Former irradiation test for SC wires at 4 K by Nishimura (NIFS): ~10²⁰ n/m²

and Design 75–79 (2005) 173–177.

D-T reaction

JAEA Tokai: JRR-3

- Fission neutrons by research nuclear reactor.
- 1 cycle: 26 days. 6-7 cycles per year.
- Fuel region: VT-1, RG, BR
 - Capsule: ϕ 55 × L900, ϕ 34 × L150. Water cooling (30 ° C). T_{sample}: ~100 ° C.
 - Nonstop irradiation during a whole cycle. 10^{18} n/m²s >> $2x10^{24}$ n/m² at 1 cycle.
- Heavy water reflector region: HR, PN, SI
 - Capsule: typ. $\phi 30 \times L150$. Water cooling (30 °C). T_{sample} : ~100 °C.
 - Irradiation time: 1min. 1 cycle. $10^{15} 10^{16}$ n/m²s >> $10^{21} 10^{22}$ n/m² at 1 cycle.
- Collaborative research contract with JAEA is necessary. (Or, usage fee will be charged.)
- Concern: Soundness report is being checked by the government. Resume in 2012 ??

Heavy water

9 C

1 G

PN-3

BR-1 RG-1

BR-4 HR-1

Beam tube

CANAL

PN-1 BR-2 BR-3

RG-4

RG-4

RG-4

Fuel

Control rod

Fuel

Control rod

Fuel

Gradiation hole

Fukushima Daiichi

Map data \$2012 Europa Technologies, GIS Innovatsia, Mapabo, SK MSC, ZENRI Radiation Effects in Superconducting Magnet Materials (RESMM'12)

Airport

JMTR(JAEA) & IMR(Tohoku Univ.) at Oarai

- Fission neutrons by Research nuclear reactor & hot laboratory for material study
- JMTR
 - 4 cycles per year
 - 2012 Plan: 1 x 10^{17} n/m²s >> $3x10^{23}$ n/m² at 1 cycle. T_{sample} : <100 ° C.
- IMR Hot Labo.
 - A number of apparatuses for material study are available.
 - TEM, NMR, X-ray diffractometer, mechanical testing machine, etc.
 - 15.5 T SC magnets w/ VTI: 4 K to RT, rating 500 A
 - Allowed radioactivity: ~GBq to ~100 GBq for 291 nuclides.
- Concern about JMTR: Aiming to resume at Oct. 2012. Soundness is being checked.

Nuclide	Max. Bq per day	Stockpile	
⁵⁴ Mn	320GBq	34.7GBq	
60Co	400GBq	41.1GBq	
⁶³ Ni	50GBq	43GBq	
⁹⁵ Zr	150GBq	1.7GBq	
110mAg	300GBq	2.46GBq	
181W	160GBq	2.88GBq	
185W	2TBq	9.86GBq	
⁵⁵ Fe	10TBq	739GBq	

Courtesy₁of Nishimura (NIFS)

Fukushima Daiichi

Map data \$2012 Europa Technologies, GIS Innovatsia, Mapabo, SK MSC, ZENRI Radiation Effects in Superconducting Magnet Materials (RESMM'12) **Airport**

JAEA Takasaki: TIARA

- AVF cyclotron + 3MV Tandem + 400 kV ion injector
- Protons: 10 75 MeV (max. 90 MeV),
 max. 2 μA
 - * Replacement of beam shutter beyond E_p of 70 MeV.
- 3 operational cycles per year. Typical user time: 10 20 hrs in a cycle.
- Sample environment at LD1 beam line
 - Vacuum chamber + multiple samples holder (up to 4)
 - Degas must be suppressed.
 - RT by conduction cooling w/ water.
 - Sample chamber w/ LN2 conduction cooling is available. (But, not in use for > 10 years.)
- Irradiation area: max. 100 mm x 100 mm (uniformity: within 10 %)
- Collaborative research contract with JAEA is necessary. (Or, usage fee will be charged.)
- Concern: Allowable radioactivity is rather lower. Check in advance.

JAEA Takasaki: ⁶⁰Co gamma ray source

- Gamma-rays: 6 irradiation rooms
 - Idesaki's group: 1 room for RT, 1 room for LT.
- Irradiation rate: 10 20 kGy/hr, 24 hrs.
- LN2 irradiation cryostat
 - Samples immersed in LN2 bath.
 - dose uniformity: < 30 %</p>
 - LN2 consumption: 1300 L for 14 days (5 6
 MGy). >> 150 kJYen
- In the meantime, priority of irradiation given to the decontamination study related to the Fukushima nuclear plant accident.

See talks by Ogitsu and Idesaki.

JAEA Takasaki: Electron Accelerator

- Electron: $E_e = 0.5 2 \text{ MeV}, 0.1 30 \text{ mA}.$
 - The sample should be thin enough.
- 8 13 hrs/day >> ~40 MGy for typical resins
- Exposed in air or inert gas. Scanning: 50 x 1200 mm².
- T_{sample}: RT
 - Conduction cooling with water.
- Casual use??

Fukushima Daiichi

Map data \$2012 Europa Technologies, GIS Innovatsia, Mapabo, SK MSC, ZENRI Radiation Effects in Superconducting Magnet Materials (RESMM'12)

Airport

RIKEN: RIBF

- Materials irradiation beam line: E5A
 - Protons from RRC: 70, 135, 210 MeV.
 - $I_p = 10 \text{ nA}$
 - 10 x 10 mm² by Wobbler magnet
 - Uniformity within 10 %
- Sample Environment:
 - Vacuum, 10 K* 373 K
 - * Renovation of cryogenic facility is necessary.
- Machine time proposal for PAC is very competitive.
 - Another beam line with 14 MeV protons (10 μA)
 from AVF cyclotron is available.

Fukushima Daiichi

Map data \$2012 Europa Technologies, GS Innovatsia, Mapabo, SK MSC, ZENRI Kadiation Επέστε in Superconducting Magnet Materials (RESMM'12) **Airport**

KURRI: Kyoto Univ. Research Reactor

- Fission neutrons. Operated as planned in 2011.
- 1 cycle: 1 MW x 46 hrs + 5 MW x 6hrs. ~25 cycles per year.
- Usual irradiation
 - Hydraulic Conveyer at reactor core
 - Aluminum capsule, ϕ_{th} : 8.2 x 10¹⁷ n/m²/s, 70 hrs at 1 MW_{eq}
 - Pneumatic Tubes (Pn-1, 2, 3) at graphite reflector
 - PE capsule, φ_{th}: 2.8 x 10¹⁷ n/m²/s, 1 hr at 1 MW_{eq}
 - Slant Exposure Tube: graphite reflector
 - Large-size samples, ϕ_{th} : 3.9 x 10¹⁶ n/m²/s, 70 hrs at 1 MW_{eq}.
- Low Temperature Line: irradiation cryostat close to reactor core
 - Cooling by He gas loop: < 20K
 - ϕ_{fast} (E_n>0.1MeV): 1.4 x 10¹⁵ n/m²/s at 1MW
 - >> 10²⁰ n/m² at 1 cycle

M. Okada et al., NIM A463 (2001) pp213-219

See Yoshida's talk.

KURRI: Electron Linear Accelerator

- 6 MeV < E_e < 32 (max. 46 MeV), max. 200 μ A.
 - Very high absorbed dose rate: ~100 kGy/s
 - sample activation beyond E_e of 10 MeV
 - beam size: φ10 mm, NOT uniform.
- Operation: 11 weeks per year
- Sample environment
 - Water cooing chamber (immersed)
 - LN2 sample cryostat

LN2 sample cryostat

Water cooling sample holder (inside)

Fukushima Daiichi

Airport

J-PARC

- **Proton Linac**
 - Currently, providing the beam to the RCS only: 180 MeV, 30 kW.
 - To be upgraded to 400 MeV soon.
 - **Future project: Accelerator Driven Transmutation Experimental** Facility. (600 MeV, 200 kW using SC RF cavities)
 - Potential Irradiation Test at primary beam line (TEF-T).
 - Construction budget has not been authorized yet... When???

Hadron Experiment

al Facility

Bird's eye photo in January of

s in Superconducting erials (RESMM'12)

J-PARC (2)

- RCS: 3 GeV, 200 kW, 25 Hz
 - Providing the beam to MLF and MR.
 - To be upgraded to 1 MW.
- MR: 30 GeV, 150 kW
 - For T2K neutrino exp.(FX) and Hadron exp. (SX)
 - To be upgraded to 750 kW.

Core of neutron source station neutron beam

Neutron source station

- •Sample space around target system would not be allowed...
- Access is very restricted.
- •Interference for the operation and the main experiment would be concerned, even though T2K neutrino target is appropriate for pion irradiation source...

At present, materials irradiation test at J-PARC is quite difficult.

3rd Horn Magnet Installation for T2K exp.

Summary

- Irradiation facilities in east Japan were damaged by the earthquake, but they were mostly recovered.
 - 2 research reactors are still in process of approval to resume.
- Material irradiation facilities
 - Protons
 - 3 accelerators: 10 MeV 75 MeV (~μA), 210 MeV (10 nA)
 - Electrons:
 - 2 accelerators: 2 32 MeV (> 200 μA)
 - Neutrons:
 - 3 research reactors
 - 1 DT neutron sources (14 MeV)
 - Cryogenic irradiation at KURR and FNS
 - Gamma rays:
 - 2 facilities w/ ⁶⁰Co (JAEA-Takasaki, KURRI)
 - Samples in LN2
- Sample environment
 - Difficulty of cryogenic irradiation at accelerator
 - Trade-off: temperature and fluence