Radiation studies for Mu2e magnets

V. Pronskikh Fermilab 02/14/2012

Outline

- Requirements on radiation quantities for Mu2e cryogenics
 - Dynamic heat load
 - Power density
 - Absorbed dose
 - DPA
- Production Solenoid Heat and Radiation Shield design. MARS15 modeling
 - Shape optimization
 - Material optimization
 - Current model
- Preliminary Mu2e@ProjectX PS design
- Conclusions

Mu2e hall MARS15 model

cm

Requirements to Heat and Radiation Shield

- Absorber (heat and radiation shield) is intended to prevent radiation damage to the magnet coil material and ensure quench protection and acceptable heat loads for the lifetime of the experiment
 - Total dynamic heat load on the coils (100 W)
 - Peak power density in the coils
 - Peak radiation dose to the insulation and epoxy
 - DPA to describe how radiation affects the electrical conductivity of metals in the superconducting cable

Requirements. Peak power density

Requirements. Absorbed dose

Figure 1.25. A comparison of the shear strengths of three types of reinforced epoxy resins that were reactor-invaliated at both 4 K and at ambient temperature. See text for differences in the fast neutron spectrum in the two reactors. Data from Munshi [1991]. (Supplementary Tables A. 3-3 and A. 8-4.)

7 MGy before 10% degradation of shear modulus.

350 kGy/yr -> 20 years lifetime

Radiation Hard Coils, A. Zeller et al, 2003, http://supercon.lbl.gov/WAAM

Requirements. DPA

$$RRR(DPA) = \frac{\rho_{hi}}{\rho_0 + \Delta\rho(DPA)}$$

$$\rho_{hi} = 2.7E-6 \ \Omega^* \text{cm}$$

$$\rho_0 = \frac{\rho_{hi}}{1000} (\text{Mu2e requirement})$$

$$\Delta\rho - \text{from KEK measurement} (\text{RR degradation from 457 to 245})$$

$$\frac{\Delta\rho}{DPA} - \text{DPA using NRT model with correction for defect production efficiency } \eta$$

$$\eta = \frac{N_D}{N_{NRT}}; \quad 0.357 - 0.535$$
Broeders, Konobeyev, 2004

MECO design DPA analysis DPA, yr^-1 1.0E-03 Z, cm 100 600 200 300 400 500 Mu₂e solutions: Taper part shape optimization Groove (target position change) _ 1.0E-04 @ 50 kW 1.0E-05 1.0E-06

É.

Material optimization

HRS model for nominal beam power

8300 zones for thermal analysis

 μ , ch.hadr > 1 MeV, neutrons > 0.001 eV gamma > 200 keV, e⁺⁻ > 200 keV Wedges are used in the downstream part of HS

Changes to the current model

- All-bronze absorber (7.64 g/cm3)
- The exclusive model combination LAQGSM @ > A/65+1 GeV and CEM below is used
- New coil geometry
- Concrete yoke
- Fields V7 MIN (4.1 T) and MAX (5.0 T)
- Beam power 1/3 of nominal

Neutron flux, total and >100 keV

$Flux = 3.0E9 \text{ cm}^2 \text{ s}^{-1}$

Power density, mW/g Dynamic heat load Q=20 W (100 W)

17 uW/g

Absorbed dose. Summary table

Quantity\Model	LAQGSM+CEM, MIN f.	LAQGSM+CEM,MAX f.	Default, MIN
T. Neutron flux n/cm2/s	8.5E9	8.3E9	7.9E9
HE Neutron flux n/cm2/s	3.1E9	3.0E9	2.4E9
Power density, uW/g	16	17	9
DPA, /yr	3.1E-5	3.2E-5	2.4E-5
Absorbed dose, kGy/yr	330	330	170

Dose = 330 kGy/yr (350 kGy/yr)

Radiation quantities at TS1

DPA=2.2E-6/yr, Power density= 0.5E-3 mW/g, Absorbed dose = 1.1E4 Gy/yr,

Preliminary MARS model of Mu2e@PX heat and radiation shield. Shape optimization

Conclusions

- Current Heat and Radiation Shield design based on thorough MARS15 simulations satisfies all the requirements for 1/3 of the nominal beam power
- of the nominal beam power
- An engineering design based on the model has been developed
- A model of Heat and Radiation Shield is also proposed for the case of nominal beam power, also satisfying all requirements

BARTOSZEK ENGINEERING