Low temperature irradiation tests on stabilizer materials using reactor neutrons at KUR

> Makoto YOSHIDA (KEK)

> > RESMM12 FNAL Feb. 13-15, 2012

Table 3 Irradiation induced resistivity, ρ_i , defect concentration, C_i , and ratio of induced to residual resistivity, ρ_i/ρ_0 .

Induced

 $(10^{-4} a.f.)$

5.6

5.6

4.8

3.6

4.0

3.6

9.1

6.0

8.0

concentration a)

Pilpo

275

31

142

54

40

48

21

142

9

Induced

382.3

363.9

116.2

87.9

102.7

264.6

1137.2

593.3

794.6

resistivity.

 $\rho_i(n\Omega \cdot cm)$

Element

Aluminum

Nickel

Copper

Silver

Gold

Iron

Cobalt

Platinum

Moly bdenum

Irradiation effects on AI, Cu in literature

pure AI (RRR=2286)

- □ Fast neutron $2x10^{22}$ n/m² Induces ρ_i =3.8nΩ.m [1]
 - ρ_i =0.02n Ω .m for 10²⁰ n/m²
- Perfect recovery by anneal at RT
- pure Cu (RRR=2280)
 - ρ_i=1.2nΩ.m [1]
 - 10% damage remains after annealing at RT

How about cold-worked Al-stabilizer → tests at KUR

[1] J.A. Horak and T.H. Blewitt, J. Nucl. Materials, Vol. 49 (1973) p161

Low Temperature **Irradiation Facility**

- Kyoto Univ. Research **Réactor Institute**
- 5MW max. thermal power
- Cryostat close to reactor core
- Sample cool down by He gas loop
 - 10K 20K
- Fast neutron flux
 - Measured by Ni activation in 2010
 - 1.4x10¹⁵ n/m²/s (>0.1MeV) @1MW

KUR-TR287 ('Fig. 7. Neutron flux distribution as a function of distance from top of sample chamber, (a) fast-neutron and (b) thermal neutron.

Irradiation sample

- Aluminum stabilizer sample from the superconductor by wire electrical discharge machining in KEK
 - □ Keep defects by cold-work
- Size: 1mmx1mmx70mm
- Voltage taps with 45mm spacing
- 4 wire resistance measurement by nano-voltmeter
- CERNOX CX-1050-SD close to sample temperature (also irradiated)

Irradiation sample

- 5N aluminum + Cu, Mg with 10 % cold work
- RRR=450
 - •1.35m Ω @RT, $3\mu\Omega$ @10K

- He gas temperature near sample 12K^{Elapsed Time (min)}
- Resistance changes linearly from low dose (No thershold)
 - $\Box 3.1\mu\Omega \rightarrow 5.7\mu\Omega$
 - □ induced ρ_i = 0.056 nΩ.m for 2.3x10²⁰ n/m² (>0.1MeV)
 - □ As expected (cf. [1]), more due to epithermal neutron?
- In COMET, expected $\rho_i < 0.2 \text{ n}\Omega.\text{m}$ for 6x10²⁰ n/m²

AI-Y, OFHC

and and and an allowed OFHC **RRR=311**

60

70

80

60 70 80 90 AI-Y 1mmx1mmx45mm(Vs) RRR=334,361

110

KUR2011Nov

□ 2.6x10²⁰ n/m² in 1MWx52hrs AI-Y1 \Box 4.0µ Ω \rightarrow 7.3µ Ω ρi = 0.07 Ωm Al-Y2

Neutron fluence

 \Box 3.6µ Ω \rightarrow 6.6µ Ω

ρi = 0.07 Ωm

OFHC

 \Box 2.6µ Ω \rightarrow 3.7µ Ω

ρi = 0.03 Ωm

OFHC, 5N AI

2011Sep

*ϕ*1mmx32mm(Vsens) 5N-AI: RRR~3000

OFHC: RRR~300

10 20 30 40 **50** 60 70 80

Annealing at Room Temperature

AI-CuMg recovered perfectly!

CERNOX degradation?

CERNOX sensor

Lakeshore CERNOX sensor

sputtered zirconium oxy-nitride thin films

SS. Courts and P.R. Swinehart, Advances in Cryogenic Engineering, Vol. 45

```
    Tested at 10<sup>19</sup> n/m<sup>2</sup> for
LHC
    Drift ~ 2mK@1.8K
```

LHC Project Report 209

3mm

2mm

CX-SD

Drift of CERNOX sensor readout

CERNOX drift 1.6k $\Omega \rightarrow$ 1.4k Ω for 2.6x10²⁰ n/m² Irradiation effect? Self heating?

Summary

- Stabilizer materials were tested by KUR neutrons
 - □ AI-CuMg, AI-Y, OFHC
 - Recovery of AI-CuMg has been observed
 - □ Cycle irradiation effect on Cu will be investigated
- Induced resistance is slightly larger than expected

 \Box epithermal neutron irradiation? \leftarrow Dr. Iwamoto

□ gamma ray?

- CERNOX seems to degrade at 10²⁰ n/m2 in temperature range of 10K-20K
 - Need to check recovery by thermal cycle to RT

Neutron fluence for experimental life-time (~10²¹ p) approaches a level of ITER magnets (ITER requirement: 10²² n/m²)

- Maximum heat deposit
 10 mW/kg
 - Maximum dose
 - Neutron flux
 - □ 1x10²¹ n/m²/10²¹p
 - fast neutrons 6x10²⁰ n/m²/10²¹p (>0.1MeV)

Problematic components

Stabilizer

- □ Aluminum alloy
- Copper
- Thermal conductor
 - Pure aluminum
 - Copper
 - □ Aluminum alloy
- Thermo sensor
 - \Box No experience at 10²¹ n/m²

Figure 3 Error on temperature measurement on some sensors during irradiation (Tbath=1.8 K)

LHC Project Report 209

- Fast-neutron irradiation induces defects in metal.
- Defects could be accumulated at Low temperature,
- and causes degradation of electrical/thermal conductivity

- Problems in
 - Quench protection, Stability
 - □ Cooling

Neutron Flux at KUR-LTL

Makoto Yoshida (KEK) 2011/5/25

Ni activation measurement

Ni foil (10 mg) was irradiated near aluminum sample in LTL sample chamber in Nov. 2010

□ 1 MW x 45 hours

- After 131 day cooling down, gamma ray from Co58 was measured
- Ni58(n,p)Co58 reaction rate during neutron exposure was calculated to be 1.55E-14 atm⁻¹sec⁻¹
- Neutron spectrum in LTL sample chamber with old reactor core setup was measured in 1987 [1]

[1] "Measurement of Neutron Spectrum at Irradiation Facilities of Kyoto University Reactor, KUR," K. Kobayashi et al., KURRI Technical Report 287 (1987)

• Average cross section in reactor neutron spectrum 0.194 barns (>1MeV)

 Average down to 0.1 MeV, although the reaction Ni58(n,p)Co58 is sensitive to energy range above a few MeV ...
 0.108 barns (>0.1MeV)

Neutron fluence

Fast neutron fluence > 1 MeV 45 [hours] x 1.55E-14 [atm⁻¹sec⁻¹] / 0.194 [barns] 45[hours]x7.990x10¹⁴[n/m²/s] =1.3x10²⁰ [n/m²]

- Fast neutron fluence > 0.1 MeV
 - □ 45 [hours] x 1.55E-14 [atm⁻¹sec⁻¹] / 0.108 [barns]
 - $= 45[hours]x1.435x10^{15}[n/m^{2}/s]$
 - $= 2.3 \times 10^{20} [n/m^2]$

*assuming reactor neutron spectrum measured in [1]