Space Charge in Target Region

Chris Rogers,
ASTeC,
Rutherford Appleton Laboratory

Space charge effects

- Consider space charge effect in target region
 - Look at linear space charge effect of pure pi+/- beam
 - Look at transverse kick from proton beam
- I'm no expert in space charge a learning experience for me!
 - I think I got the physics right
 - ...
- Context is "Checking that we don't have to worry about this stuff"
 - I'm not expecting a problem

Linear SC in Cooling Section

- Quote 2d envelope evolution equation in the presence of space charge (from S.Y. Lee):
 - $x'' + K_x x 2 K_{sc}/(x+y) \varepsilon_x^2/x^3 = 0$
 - $y'' + K_y y 2 K_{sc}/(x+y) \varepsilon_y^2/y^3 = 0$
 - x is the width in x of the beam, y is the width in y of the beam
 - Prime denotes differentiation wrt z
 - K_x, K_v are transverse lattice focussing strength
 - K_{sc} is a constant ~ number of muons in the beam
- In solenoids, assume cylindrical symmetry

•
$$K_x = K_y = B^2/2p$$

$$\epsilon_{x} = \epsilon_{y}$$

Such that we get

•
$$x'' + K_x x - K_{sc}/x - \varepsilon_x^2/x^3 = 0$$

Linear SC in Target Region

- Evolve linear envelope equation from the target
 - Start with beam envelope radius ~ 1 cm
 - Proton spot size
 - 8 GeV beam @ 50 Hz => 6e13 protons per pulse
 - Scale to 1e5 proton MARS file from Harold
 - 5.5e4 pi+ and 5.0e4 pi-
 - => 3.3e13 pi+ per pulse and 3e13 pi-
 - Assume bunch is 30 cm long => 1e12 pi+/mm

Caveats

- But overlapping pi+ pi- beams which cancel each other's charge
 - 10% more pions => net beam has 1e11 pi+
- But significant scraping after the taper which I have ignored
- Envelope equation should not have such big beta oscillations
- Conclusion: likely no effect, may want to check in a proper space charge code

Space Charge in Target Region

- Near to the target we have an intense proton beam moving right next to our pions
 - It is known that space charge does have an effect on the proton beam
 - What is the effect on pions?
- Assume simple, worst case scenario that proton bunch are a spherical charge with radius 1 cm and constant density inside proton bunch
- Then I think electric field goes like (in p rest frame)

•
$$V = q / 4 \pi \epsilon_0 r$$
 $r > r_{min}$

•
$$V = q / 4 \pi \epsilon_0 r_{min} \dots r < r_{min}$$

- In lab frame (A,V) transforms like a 4-vector to calculate the actual field
 - Jargon: retarded potential

No fields

- In the absence of fields, quite a strong effect
 - For 1e14 protons at 5 GeV, 30 cm (1 ns) long bunch, 1 cm spot size
 - Worst case, probably impractical for proton beam
 - Fire pions in momentum range 0.1 5 GeV
 - Do not consider pion self-charge for space charge calculation

Fields - pi+

Use the FS2 field taper ... basically no effect

Conclusions

- This is a very basic study
 - Maybe see a slight effect on pion beam optics from self-charge but probably not
 - May want to check with proper space charge routines
 - No significant effect from proton beam on pion beam