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High Energy Muon Facilities
 Growing interest in large, high energy muon facilities

 Neutrino Factory -> neutrino oscillations and 
 Muon Collider -> energy frontier or Higgs factory

 Sizeable R&D effort
 Muon Accelerator Programme in US

 Muon accelerator task force called by Fermilab director
 International Design Study for a Neutrino Factory

 Supported by hardware prototyping
 Muon Ionisation Cooling Experiment (MICE)
 Electron Model with Many Applications (EMMA) prototype 

FFAG
 Mercury Intense Target (MERIT)

 Such facilities have been made feasible by
 Fast accelerating, high acceptance accelerators
 Muon capture conceptual development



  

Neutrino Factory Design



  

Neutrino Oscillations

 Neutrinos created as superposition of 3 mass states
 Different phase advance of mass states leads to 

oscillations between flavour states
 Lepton flavour violation
 Matter-antimatter asymmetry (CP violation)

 Governed by fundamental parameters
 Square mass difference of mass states
 3 mixing angles
 CP violating phase

 Seek to answer fundamental questions of the universe
 Matter-antimatter asymmetry

 Seek to measure neutrinos precisely to answer these 
fundamental questions



  

Neutrino Factory Concept

 Seek to manufacture 
neutrino beam from muon 
decay

 Intense, high energy, pure
 Fire neutrinos several 

thousand km through the 
earth

 Measure the change in the 
admixture of neutrinos

 Gives very sensitive device 
for analysis of neutrino 
oscillations

 Better sensitivties than e.g. 
LBNE or Beta Beam

 Beta beam + superbeam is 
competitive



  

Neutrino Factory Design

 Several iterations
 2(4) feasibility 

studies
 FS1, FS2, FS2a, FS2b
 International 

Scoping Study 
(2006)

 International Design 
Study (IDS) ongoing



  

Proton Driver

 Neutrino Factory requires a 4 MW 
proton source

 1 MW of SOTA proton sources
 Demanding but feasible

 Aim for ~ 5-15 GeV proton energy
 Gives highest pion yield/beam 

power
 Gives highest pion yield/shock on 

target
 Question: what is the challenge 

with 4 MW proton source?



  

Target
 Intense beam may quickly destroy solid target

 Proposal to use liquid mercury jet
 Pipe destroyed by cavitation
 Jet will be contained by intense solenoid field

 A PoP experiment recently finished successfully at CERN
 MERcury Intense Target (MERIT)

 Solid target alternatives under study

p

Hg syringe

20 T pulsed 
solenoid

Hg Nozzle 
(injection)

Hg 
Capture



  

Muon front end

 Beam is very large after pion decay => difficult to control
 Capture longitudinally using fancy RF
 Capture transversely using ionisation cooling
 More in a few slides



  

Recent news: Mice win Nobel Prize



  

Acceleration

 Two technologies in acceleration chain
 Recirculating Linear Accelerator (RLAs) in dogbone 

geometry
 Fixed Field Alternating Gradient machines (FFAGs)

 Enables
 Acceleration on time scale of muon lifetime
 Acceleration with large apertures

 Acceleration to 10 GeV



  

Storage Ring

 Goal: maximize muon decays in straight sections
 Racetrack, Triangle/Bowtie geometries have been examined

 Racetrack is currently favoured (most flexibility)
 use long straight sections ~400 m
 vertical depth of ring can be issue for long baselines

 Use µ+ and µ-

 Gives access to measurement of unitarity in neutrino mixing 
matrix



  

Muon Collider Design



  

Muon Collider Concept

 Aim is to reach energy frontier lepton collisions using 
muons

 Challenge to get sufficiently high luminosity for interesting 
physics

 Need lots of cooling

 “High emittance case”
 Target -> Buncher -> Straight Cooler -> Guggenheim 

Cooler -> Debunch -> Guggenheim Cooler -> Acceleration
 Possible to construct a Higgs Factory
 Possible to construct a 4 TeV lepton collider (or more)

 Can be constructed in stages
 Neutrino Factory -> Higgs Factory -> 4 TeV Muon Collider

 Cooling technology is the challenge



  

Muon Collider Concept



  

Muon Collider emittance map



  

Roadmap for HEMC (@ Fermilab)

 Footprint is on 
present Fermilab site

HIGGS
FACTORY



  

Muon Front End



  

Baseline Front End
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 Adiabatic B-field taper from Hg 
target to longitudinal drift

 Drift in ~1.5 T, ~100 m solenoid
 Adiabatically bring on RF voltage to 
bunch beam
 Phase rotation using variable 
frequencies

 High energy front sees -ve E-field
 Low energy tail sees +ve E-field
 End up with smaller energy spread

 Ionisation Cooling
 Try to reduce transverse beam size
 Prototyped by MICE
 Results in a beam suitable for 

acceleration



  

Secondary Particle Contamination
 Significant problem with 
secondary particles in the front 
end

 Potentially activate the entire 
front end

 Potentially activate later 
acceleration system

 Kickers, septa, etc
 Additional heat load on e.g. 

superconductors
 Not acceptable

 Plan is to manage using chicane 
and proton absorber

 Chicane removes high 
momentum particles (p > 500 
MeV/c)

 Absorber removes low energy 
particles (p < 500 MeV/c)

 Leaves low energy electrons 
and muons



  

Particle selection scheme

 Bent solenoid chicane induces vertical 
dispersion in beam

 Single chicane will contain both signs
 Opposite signs have dispersion in opposite 

sense
 Dispersion is vertical

 Little disruption to the actual beam
 High momentum particles scrape

 Subsequent proton absorber to remove low 
momentum protons

 Non-relativistic protons don't have much 
energy, even for relatively large momenta

 Not yet in “baseline” but aim to get it in in 
next few weeks 
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Phase-Energy Rotation

 Beam is very large after pion decay => difficult to control
 Seek to manipulate beam in longitudinal phase space

 Turn energy spread into a time spread
 Introduce microbunches to enable higher RF frequencies

 Higher RF gradients

 Allow beam to drift to develop energy time correlation
 Apply RF phased so that front of beam gains more energy than 

back



  

Muon Ionisation Cooling

z [m]

 We have controlled the beam longitudinally – what about 
transverse?

 Only technique competitive with muon lifetime is “ionisation 
cooling”

 Never before been demonstrated
 MICE -> Proof of Principle ionisation cooling experiment

 How does it work?
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RFAbsorber

 4D (transverse) cooling achieved by ionisation energy loss
 Absorber removes momentum in all directions
 RF cavity replaces momentum only in longitudinal direction
 End up with beam that is more straight

 Stochastic effects ruin cooling
 Multiple Coulomb Scattering increases transverse emittance
 Energy straggling increases longitudinal emittance

4D Ionisation Cooling



  

Time-energy distributions

 



  

Time-energy distributions

 Now watch the movie
 Design including chicane/proton absorber

 Look out for
 Z=30 m – 40 m we have collimation of particles with p >~ 600 

MeV/c in the chicane
 Z = 40 m we have a drop in momentum from the proton absorber
 Z = 70 m we start to adiabatically form micro bunches

 At ct=1.5 m intervals until
 Z = 103 m we start to phase rotate – dephase the cavities so that 

the tail sees a +ve voltage and the head sees a -ve voltage
 Z = 141 m we enter the cooling channel... quite a lot of longitudinal 

loss here, mostly particles that would have been lost later on 
anyway

 In fact we probably end the cooling channel at Z=216 m
 Usually simulate past the maximum

 Note low energy, large ct is the tail of the bunch
 small ct, high energy is the head of the bunch
 i.e. small time => arrives at the z plane earlier



  

Ionisation Cooling Menagerie – 
Straight Coolers



  

Cooling Motivation

 Cooling is important to the Neutrino Factory
 Increases number of muons by factor ~2
 Mitigates challenges in high acceptance accelerator and 

storage ring design
 More cooling desirable, but cost optimisation issue

 Cooling is vital to the Muon Collider
 Need to reduce 6D emittance by several orders of 

magnitude to get to interesting luminosities
 The aim is to increase phase space density of muon 

beam
 Requires non-symplectic transport

 I.e. cannot be achieved with electromagnetic beam elements
 Instead use some material to “absorb” density

 “Heats” material
 “Cools” muon beam

 A number of cooling channel geometries have been 
proposed with different merits and problems



  

FS2 Channel

 Highly optimised cooling 
channel

 Liquid Hydrogen absorbers
 200 MHz RF
 SFoFo superconducting coils
 Best performing linear cooling 

channel
 Challenging engineering

 Not cost optimised
 Detailed engineering design

Number of  that fit in accelerator
Total Number of 



  

FS2A/IDS Channel

 Cost optimisation points to less aggressive cooling
 Singlet solenoid lattice
 Solid Lithium Hydride absorbers coated with Beryllium 

 Electromagnetically seal RF cavities to improve Q-Factor

9 mm

0.025 mm

0.10 mm

860  mm

5 mm

600 mm

500  mm

RF Cell (G4BL)

Kill
Lithium Hydride
Beryllium



  

805 MHz RF

Fermilab MTA

 In most designs, solenoid field overlaps cavities
 Solenoids have extended fringe fields
 But this magnetic field induces breakdown in the RF cavities
 Reduces peak achievable gradient by factor ~2

 Investigations under way in the Fermilab Muon Test Area
 805 MHz RF tested inside (blue) Lab G magnet
 Button tests to examine different materials

Current 
configuration Proposed

B-Induced Breakdown in RF
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Shielded RF

 Increase cell length to remove 
RF from solenoid fringe fields

 Add shielding using iron or 
bucking coils?

 Try to keep good acceptance 
and focusing

 Look at cooling section
 This is where the RF is most 

limited
 This is where optics are most 

demanding
 How well can we cool in this 

shielded scenario?
 How well can we optimise the 

cooling lattice?
 Try to keep RF cavities in < 0.5 

T fields

Shielding

RF

Coil
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Transfer Matrix for a Solenoid

 What is a linear resonance?
 What is criterion for linear resonance in quadrupole channel?
 What is criterion for linear resonance in solenoid channel?
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Lattice quality

 Two criteria for lattice quality
  function => how tightly focussed the beam is at the absorber

 Determines how much cooling we get
 Require good  function over a large momentum range

 Acceptance => the beam emittance that makes it through the 
lattice

 Determines how much beam we get through
 Scale as ~ <Bz

2>/p
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 vs Cell Length

 We want tight focussing on the absorbers for good cooling 
performance

 Tight focussing => more cooling
 Aim for  <~ 1500 mm over ~150 - 300 MeV/c (liquid Hydrogen)

 As cell length gets longer d/dp gets worse
 Making it hard to contain a beam with a large momentum spread

 Keep cell as short as possible
 To keep Bz off RF, need to reduce solenoid fringe field
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Lattice Schematic
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Capture Performance

 Transmission inside usual cuts:
 30 mm normalised transverse acceptance
 150 mm normalised longitudinal acceptance

 Note however momentum cut is
 173 < Pz < 373 MeV/c  for low field geometry
 100  < Pz < 300 MeV/c for baseline

IDR performance
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 Optimise magnetic lattice for (in order of priority)
 Flat β vs momentum to reduce chromatic aberrations
 Small β at absorbers to improve cooling
 Small radius beam to reduce scraping (=>small     )

 Choose to use a 10 m long half-cell
 FS2 was 2.75 m; FS2A was 0.75 m

 Alternating B-field to conserve canonical angular momentum
 Make field 0 at absorber so that kinetic angular momentum is 0
 Then kinetic angular momentum does not change in absorber
 So canonical angular momentum conserved

SFoFo Magnetic Lattice

β
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Field and beta function

z [mm]

β 
[mm]

Bz [T]

z [mm]
 Convenient shoulders in β function for RF cavities

 These are still the limiting aperture
 Scraping here limits performance

 Tight focus at the absorbers improves cooling
 Lessens the effect of heating due to Multiple Coulomb 

Scattering
 Large β in centre forces central coil to high radius

 Becomes more expensive
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E [MeV]

500
400

E [MeV]

β 
[mm] co

s(
φ)

Momentum Dependence

E [MeV]E [MeV]
 2nd order, transverse aberrations dependent only on energy 

spread
 Try to remove non-linearities by making β function constant with p
 Restricts transverse energy spread

 2nd order longitudinal aberrations dependent on phase advance
 Leads to correlation between momentum and transverse amplitude

 Resonances when cos(φ)>1
 Lattice is not focussing at these momenta
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Capture Performance

A = 15 mm

A = 100 mm

Length [m]
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 Use same figure of merit
 Number of µ in some accelerator acceptance
 Cooling performance for long, straight cooling channel only

 Comparable cooling performance to FS2A but still not as 
good

 More expensive
 But RF cavities no longer sit in such strong B-fields



  

Movie



  

Ionisation Cooling Menagerie – 
Recirculating Coolers



  

Recirculation - Benefits

 Recirculating beam => reuse hardware
 Makes cooling device cheaper

 Recirculating beam => improved cooling
 Special technique “emittance exchange”

 However
 Difficult to get the device to work...



  

Dispersive beams

 Introduce bends into beamline
 Now off-momentum particles follow a 

different trajectory to on-momentum 
particles

 Consider cell-by-cell closed orbit
 Dispersion is the distance between the 

on-momentum closed orbit and an off-
momentum closed orbit

 Normalised to the momentum difference

 Dispersion is a 1st order effect
 In solenoid-dipole channels dispersion is 

2D
 Rotation between x and y turns an offset 

in x into an offset in y

D

p0+dp

p0



  

Dipole

Wedge

RF

 Ionisation cooling cools in transverse phase space
 But longitudinal emittance is also large
 It would be useful to cool in longitudinal and transverse phase 

space
 Emittance exchange takes emittance from longitudinal phase 

space to transverse
 Introduce dispersion => higher energy muons have larger radius
 Wedge absorber takes more energy from large radius muons

 This is a shear in x-E phase space
 Does not cool the beam (to 1st order)

 But together with transverse cooling provides 6D cooling

Emittance Exchange



  

Ring Cooler

 RFoFo cooler makes bending 
field using tilted coils

 Ring circumference 33 m
 Improves number of muons 

into small acceptance by 
~100s

 But a number of challenges
 Injection is highly challenging
 Heat load on absorbers is 

demanding
 RF breaks down in high Bz



  

Guggenheim Cooler

 Pull ring out into a helix
 Solve absorber heating
 Solve kicker issue

 Need B-shielding between 
floors

 Leaves RF sitting in high Bz
 Performance comparable to 

ring
 But need to buy much 

more hardware $$
 Need one for each sign



  

Helical Cooler

 Change aspect ratio of the 
Guggenheim

 May make Guggenheim 
more compact

 RF cavities built into the 
magnet



  

“High Emittance” Muon Collider



  

Muon Ionisation Cooling Experiment



  

MICE 4D Cooling PoP

 Proof of principle muon ionisation cooling cell
 Under construction at Rutherford Appleton Laboratory
 Beamline, AFC, RF, trackers, PID detectors

 Aim to understand engineering risks and prove physics 
modelling



  

Beam Dynamics

 MICE designed to run at a 
number of different settings

 Different momenta
 Field flipping and non-flipping
 Different focussing at 

absorbers
 Different absorber materials
 Different input beams

 Baseline case is 200 MeV
 β tightly focussed at absorbers
 Bz 0 in absorber material

 For angular momentum 
conservation

 Additional focussing in RF 
cavities

 To prevent excessive scraping



  

Momentum Acceptance

 Lattice design for high momentum 
acceptance

 Means staying clear of linear 
resonances

 Understand resonances ito Fourier 
components of on-axis B-field

 Each resonance controlled by a 
Fourier Component

 MICE is an “SFoFo-type” lattice
 Suppress fourier components that 

would give linear resonances
 MICE has wide acceptance band in 

range 150 < Pz < 250 MeV/c
 Weak stop band at ~195 MeV/c



  

Cooling Performance

 MICE gives ~ 10% 
emittance change

 Optical heating
 Absorber cooling

 Cooling gives an increase 
in muon density at MICE 
centre

 Heating gives an increase 
in muon density at MICE 
fringe

 Hope that cooling is faster 
than heating!



  

Measurement Performance

 In emittance measurement 
Detector error is a systematic 
effect

 MICE measures beam width etc
 Errors in position measurement add 

to beam width measurement in 
quadrature

 Given a good knowledge of 
detectors this error can be removed

 Gives high precision emittance 
measurement

 Aim is to measure emittance 
change to ~ 1%

 Challenging
 But simulations indicate it can be 

done!



  



  



  



  

Conclusions

 Growing interest in large, high energy muon facilities
 Neutrino Factory -> neutrino oscillations
 Muon Collider -> energy frontier or Higgs factory

 Such facilities have been made possible by
 Fast & high acceptance accelerators
 Revolution in muon cooling conceptual design

 Muon cooling is a challenging technology
 High acceptance accelerators
 High gradient RF
 Superconducting solenoids

 Soon to be proved by experiment
 MICE construction underway
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