First Look at Muon Chicane

Chris Rogers, ASTeC, Rutherford Appleton Laboratory Feb 1, 2011

Overview

- Previously showed a proton absorber can take out protons with momentum <~ 500 MeV/c
 - "Shallow" study, needs more work
- Now go on to look at what can be achieved with chicane
 - Aim is to take out all particles with momentum >~ 500 MeV/c
 - Remember that muon momentum acceptance is ~ 100 400 MeV/c
- Preliminary design
 - Considerations
 - Initial parameter scans
 - Setting up for optimisation

Chicane concept

- Initial concept is "pair of double chicanes"
 - High energy particles hit a beam dump
 - Chicane area becomes radioactive
 - Probably part of target remote handling area
 - Beam dump has to handle significant beam energy
- Concentrate here on chicane optics (first look)
 - Propose using bent solenoid optics
 - Good acceptance for this momentum range
 - e.g. used by mu2e experiments
 - e.g. used by 6d cooling channels
 - e.g. used by stellarators

Chicane concept

- Concept is "pair of double chicanes"
 - High energy particles hit a beam dump
 - Chicane area becomes radioactive
 - Probably part of target remote handling area
 - Beam dump has to handle significant beam energy
- Concentrate here on chicane optics (first look)
 - Propose using bent solenoid optics
 - Good acceptance for this momentum range
 - e.g. used by mu2e experiments
 - e.g. used by 6d cooling channels
 - e.g. used by stellarators
- For now only present optics
 - Beam dumps not straightforward
 - Comment on particle charge later

Chicane optics

- Four independent parameters
 - Number of coils in the bends
 - Bending angle per coil
 - Solenoid field strength
 - Dipole field strength
- Optimise for reasonable performance over large momentum range
 - Aim is to get decent performance over dp/p ~ +/- 100%
 - Power law expansion (multipole approach) doesn't work here
 - Work numerically with tracking code

Test particles

- Aim is to get clean cut on particles in chicane
 - Dispersion function 0 up to maximum momentum
 - Dispersion function large after maximum momentum
- Look at test particle amplitude vs momentum after chicane
 - Test particles initially on-axis
 - Measure how far from the axis they are
 - In x-px-y-py phase space
 - Normalised to matched beam ellipse

E 0.4 0.2 0 0.2 0.4 0.2 0 0.2 0.4 0.2 0 0.2 0.4 0.5 0.0 MeV/c 140.0 MeV/c 230.0 MeV/c 140.0 MeV/c 230.0 MeV/c 320.0 MeV/c 320.0 MeV/c 320.0 MeV/c 320.0 MeV/c 550.0 MeV/c 550.0

 B_z : 1.5 T B_y : 0.0 T n_s : 10.0 θ : 1.25° μ^+ at z=25900.0

 B_z : 1.5 T B_v : 0.0 n_s : 10.0 θ : 1.25° μ^+

Test particles vs lattice geometry

- How does this amplitude growth change with lattice parameters?
- Changing bend angle per coil
 - Excites amplitude growth at ~250 MeV/c
 - Improves momentum collimation
- Changing number of coils per bend
 - Excites few high amplitude regions

Test particles vs lattice field

- Increasing B_z scales the lattice optics
- Increasing B_v degrades performance

Finite beam

- What happens when a finite beam is passed through the chicane?
 - Assume Twiss parameters are more-or-less correct
 - Look at emittance increase of a shell of particles on 4D hyperellipsoid
 - Initial amplitude typical of particles in our beam~ 50 mm
 - Shell in x-px-y-py phase space, initially matched to 1.5 T solenoid

Realistic beam

- Get reasonable transmission for a realistic beam
 - ~25% fewer pions transmitted below 500 MeV/c

Comment on particle charge

- Lattice is charge invariant
 - No dipole field
 - Sign change only switches direction of angular momentum
 - Leaves focussing etc unchanged
- We only need a single arc of the chicane
 - Magic!
 - Or even just a bend

Comment on particle charge

- Lattice is charge invariant
 - No dipole field
 - Sign change only switches direction of angular momentum
 - Leaves focussing etc unchanged
- We only need a single arc of the chicane
 - Magic!
 - Or even just a bend

Note on particle charge vs orbit

Single bend - optimisation

- Optimisation is similar for single chicane as for double chicane
 - Harder to excite these funny resonances at ~ few hundred MeV/c
 - Might be an optimisation for more coils
 - For now, stick with 1.25° and 10 coils per bend

Field smoothness

- I split each coil into several subcoils
 - Each subcoil evenly rotated to make a smooth curve
 - Lower current density to keep total current constant
 - Gives same field on axis, but more smooth
- Some dependence on field smoothness

Transmission vs p (double chicane)

Comment on particle charge

- Lattice is charge invariant
 - No dipole field
 - Sign change only switches direction of angular momentum
 - Leaves focussing etc unchanged
- We only need a single arc of the chicane
 - Magic!
 - Or even just a bend
- Need to do more pushing of beam through
- Still need to work on beam dumps
 - How does beam get out of solenoids?
 - Normal conducting insert?
 - Reduced field + gap breaking coil geometry?
 - Shielding inside coils?
 - TBD...

- Reasonable optics design for the chicane
 - Not too much emittance growth
 - Good transmission below momentum cut-off
 - Good collimation above momentum cut-off
- Next consider beam dumps
- Reconsider proton absorber in context of chicane (Neuffer?)
- Have a look at transverse collimation (Snopok?)