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Shielded RF Lattice []'C/[

= | wanted to remind folks of the work that has been done on this
lattice

= Last major update at NuFact ~ 6 months ago
= Worth reminding
=  Summarise more recent work that | have done since then
= Add a few new things since christmas or so
= Quite a lot of slides - apologies
= |'ve tried to break it up a bit
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RF Problem

Neutrino Factory baseline front end has RF in 2 T B-fields

= Experiment indicates this will not work
= Many caveats

= Available RF voltage may be significantly reduced
= Major technical risk
Several schemes to overcome this
= Fancy RF cavities (new materials, liquid N, cooling...)

= Magnetic Insulation
= High pressure gas to insulate RF cavities

fa

These are multi-million $, >5 year R&D plans that may not work

= Probably necessary for Muon Collider
For a Neutrino Factory, can we do something simpler?

= Adapt lattices to keep RF cavities in low fields - “Shielded RF”

For this talk | concentrate on the cooling section

= Stronger B-fields, higher RF voltages, more constraints on lattice
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Shielded RF Fely

= |ncrease cell length to remove RF
from fringe fields

= Add shielding using iron or bucking |»| I | | |
coils m
= Look at cooling section |. | | . | | . I

= This is where the RF is most limited

= This is where optics are most
demanding

= How well can we cool in this
shielded scenario?

= How well can we optimise the
cooling lattice? ‘——“F' w.

= Tryto keep RF cavitiesin<0.1 T . M///

fields /
= Liquid Hydrogen absorbers o / e

IDS ASOL Lattice
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Lattice quality []'C/[
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= Two criteria for lattice quality
= 3 function => how tightly focussed the beam is at the absorber
= Determines how much cooling we get
= Require good B function over a large momentum range
= Acceptance => the beam emittance that makes it through the lattice
= Determines how much beam we get through
Scale as ~ <B *>/p
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= We want tight focussing on the absorbers for good cooling performance
= Tight focussing => more cooling
= Aim for B <~ 1500 mm over ~150 - 300 MeV/c (liquid Hydrogen)
= As cell length gets longer dp/dp gets worse
= Making it hard to contain a beam with a large momentum spread
= Keep cell as short as possible
= To keep B, off RF, need to reduce solenoid fringe field
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Dynamic Aperture vs Radius
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= Reducing radius of coil reduces lattice acceptance
= Aim for acceptances >~ 100 mm
= Naively “expect” that reducing colil radius decreases acceptance
= “Particles travel through region of poor field quality near the coils”
[ |

In solenoid, optics is uniquely defined by on-axis field

= So any attempt to curtail the fields is like reducing the coil radius
= What does “poor field quality” really mean?



3rd order coefficient

Centre Length [mm]

Non-Linear Terms
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Non-linear terms => X

2nd order terms have i+j=2
= Purely chromatic, can be ignored
3rd order terms have i+j=3

= |ncrease by order of magnitude in
short fringe field

= Intheory go as d°B /dz?

For very short fringe fields 3rd order
terms become large

= d?B /dz* becomes large
= e.g. consider tanh model for B (r=0)
= B =tanh[(z-z,)/A] + tanh[(z-z,)/A]

Introducing bucking coils etc is
equivalent to reducing coil radius

= Not helpful



Coil Length

Can we make progress by tweaking
coil length?
= Long coil needs lower B, to keep
<B,?> constant => more space
= But field extent is longer => less
space
These effects ~cancel

= Dashed line = field free length
= B < 0.5 T (assume shielding for rest)

= Per 2.5 m half-cell
= Full line = acceptance at 200 MeV
Are there practical reasons that
influence coil length?
= Longer => Lower B,

= Longer => Lower current densities
= Longer => More hardware required
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Lattice Choice

= |n light of this - what lattice?

= Try4dm,6 mor8mcell
= Longer cells have worse optics

= Longer cells have better RF packing
fraction

= 1/8, 1/3, 1/2 respectively
= Try long coil or short coil
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Long Coil Versus Short Coll
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=  Compare long coil with short coil

3 m cell, 30° RF phase

Count number of muons in accelerator acceptance
= 30 mm transverse, 100 - 300 MeV/c momentum bite

Short coil does a bit better

~52% compared to ~42%

Probably means my “long coil” is too low radius
Perhaps initial mismatch is a problem



Cell Length

= Cell length optimisation

Simulated using long coil option
Race between RF packing
fraction and B function

Higher RF packing => quicker
cooling

Shorter lattice => lower 3

function (better equilibrium
emittance)

= 3m lattice is optimal

Worry about initial beam loss
Nb low statistics

Get ~ 40 % with long coil (a bit
more optimisation is possible)

= (Case for beta tapering?
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Lower B-Field Lattices a'f/(

Cooling channels with RF in high magnetic fields is tough
= High, unknown technical risk for the Neutrino Factory

= Solutions with >5 year, multi-million $ R&D programmes which may
not work (impatient!)

It is possible to build a cooling channel that keeps RF cavities
away from strong fields

= Reduced cooling performance compared with baseline

= 3 m lattice preferred

= |t's all a bit marginal - it can be built, but worry about reality
Bucked coil lattice is equivalent to reducing coil radius

= Spherical aberrations drastically reduce transverse acceptance

= Not much progress to be made here
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Coils and Shielding []'C/([

Long coil |-

= Assume iron shielding on coils
= Makes handling magnets harder
= e.g. 14 tonnes Fe (long coil)
= Lower currents required on coils
= Reduces fringe field on RF

= Shield tunnel from intense fields
= Stray iron does not affect beam
= Stray fields do not affect hardware
= Stray fields do not affect personnel e T
Short coil |

=  Compare long coil or short coil

= |ong coil may be preferable

= Less shielding
= | ower current densities
= Normal conducting possible?

= More conductor

NG_COIL.AM 7-17-2009  9:21:24
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Shielded vs Unshielded Fields []"'/[

short coil, shielded, 76 A/mm? long coil, shielded, 15.6 A/mm?
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=  Shielding introduces slightly higher field 2nd derivative (blue)
= Reduces absolute field value (black) noticeably at fringes
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Shielded vs Unshielded Optics []'C/[

50 = [
'g T Shielded long coil E 300— - Shielded long coil
; _bl]O:— —————— Unshielded long coil :—| A Unshielded long coil --"'}ﬁ’;{
R Unshielded short coll » 250 Unshielded short coil
- Shielded short coil L 2002_ Shielded short coil -~
1500 P : R
L __f",,,--«f’ C 7
C L 150— B -
1 000—_ ..f*-'”'ff N w ad
E ﬂr,,,u- 100:— ) /
500— n
- 50:_ //
o:“l -|; Ll e vy v v v b Loy {go'l'l/qéol : |260| : |22|0| : IZAd : |2é0| : |2é0| : |360| : |320
160 180 200 220 240 260 280 300 320

P, [MeVic] P [MeVic]
= [ at absorber unaffected by presence of shielding, coil length

= <B*> =same for all lattices

= Acceptance is slightly affected by short vs long coil
= Can improve short coil acceptance by increasing coil radius
= Probably of order accuracy of acceptance calculation routines

= Acceptance is ~unaffected by this weak shielding of fringe field tails



Cooling Performance
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= Transmission into momentum bite 100-300 MeV/c and
acceptance of 30 mm

= Shielding gets increase of ~ 52% (better than no-shielding!)
= No-shielding gets increase of ~ 45%
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Transverse Matching 5"::/[

= Try using beam directly from simulation

= p63a lattice
http://www.astec.ac.uk/groups/beams/users/rogers/Front_End/Bea
ms_and_Lattices/FrontEnd_FS2A ICOOL_p63a-2010-02-02/
= Linear matching using derivatives to generate transfer maps
= Vary last coil of phase rotation and first coils of cooling
= Not quite perfect but beam is pretty rough

= Then pass through an optimiser
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2 i
16 .
oF L
:
2 —
3 .
4F -
_50—| I1|1:I|ljllljlI Izlﬂlﬂhl I:ili:lll:llljlI Ial.lijlll:lll:lI It';i]l[llﬂl I[-illlll:lll:lI |?|0|0|0| IBll:lll:llljlI ISJI{III:III:II ‘IIlI]l]l]l] 0 I Ll’OllJI'.Il I-;Olﬂlill I éOllJEID I énlﬂlill I1|(.'ll.!IDI(II I1I2l|JDI'ZIl|1|4||JIII'|0 I1|Gl.lllill'l.'ll1ISl;IIl|(.'IIZI(.'ll.!lDI(Il Izlzoon

z [mm] z [mm]



Apertures
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Change in muon rate vs aperture determines
= How much space we can get for magnets
= Thickness of windows
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=  Windows knock the improvement in rate quite a bit
= | use ~minimum thicknesses from MICE lattice
= Rather optimistic
= Bigger apertures => thicker windows
= Still quite damaging to muon rate
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Improved Acceptance 5";/(
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Momentum acceptance goes proportional to p
= j.e. B(0p/p) is constant as p increases

= Transverse acceptance gets larger at higher momenta (~p?)
=  Geometric emittance effect

= Qverall expect better transmission at higher momenta
= And/or possible to move to smaller 3 function

= |ncrease RF phase - “adiabatic taper”

= But cooling length goes as dp/p
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w Introduce “acceleration cell”

Acceleration Cooling

Extra RF cavity!
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Higher Momentum Beam TC/(
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Try accelerating the beam for real
Bring magnetic field up “adiabatically”
= Trying to taper B function a bit

= Matched [ starts at ~1.5 m and ends
at~1.1m

= Slight B beating, probably related to
momentum bouncing around
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Emittances etc TC/[

flots) = Some longitudinal mismatch
0014~ = Bit of longitudinal emittance growth
0012~ = Transverse looks ok
“E = Note in this case I've assumed a
°-°°"5_ transverse matching
HE = Massaged my beam to give this match
0.004—
- I I5|0I - I11|]l]I - I1|5l]I - I2t|]l]I - I2%0I - I:!tlll]I I
z [m]
E E 01
- 3 S C
0.09;—
25 0.08;—
- 0.072—
2 0.os§—
E 0.053—
1.5(— -
B 0.04
1: I B B BRI AR RS N 0-033_.|....|....|....|....|....|....|..
50 100 150 200 250 300 0 50 100 150 200 250 300

z [m] z [m]



4
fad\
Higher Momentum Beam TC/(

Point A Point B
= \ = Fairly large transmission
%0000 u 25 v ; L L losses
S 2 " >~50%
300 = Most of the remaining beam
& 6000 is inside the 30 mm
- acceptance
Emu;_ XTOS ;Odfn < 100 Mevie = Getting increase in rate of ~
gzuuu:— 70 %
E o_l....l....|....|....|.... = But with more hardware
200 -100 0 100 00 = Performance quite similar
to baseline

= |f | stop at point A - | use roughly the same amount of hardware as
the baseline (RF packing fraction ~ 1/2 that of the baseline)

= And lose a few muons
= | can recover baseline performance if | go to Point B
= But those last few muons are expensive!
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Baseline Long Coil Accelerated 1 Accelerated 2
RF Cavities
Number ~80 ~120
Peak Field 15.500 19.000 175-12.5* 22.5-17.5™
Length 50.000 50.000 50.000 50.000
Frequency 201.250 201.250 201.250 201.250
Phase 40.000 30.000 20-40* 20-40*

* RF ramps down linearly from 17.5 to 12.5 MV/m in 10 acceleration cells and from 20 to 40 degrees phase.
Subsequently RF operates at 17.5 MV/m and 40 degree phase. Note I am going to “Point B” here.

** RF ramps down linearly from 22.5 to 17.5 MV/m in 10 acceleration cells and from 20 to 40 degrees phase.
Subsequently RF operates at 22.5 MV/m and 40 degree phase. Note I am going to “Point B” here.



Coils
Baseline Long Coil

Coils
Number ~80 ~60
Peak Field 2.783 1.633
Superconductor Volume 0.060 0.283
Current Density 106.667 17.660
Inner Radius 0.350 0.400
Radial Thickness 0.150 0.100
Length 0.150 1.000
Iron shield mass N/A 14T

Accelerated 1

~100
1.295-2.312**
0.283

14.0 to 25.0™
0.400

0.100

1.000

N/A

y
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Accelerated 2

~100
1.295-2.312**
0.283

14.0 to 25.0™
0.400

0.100

1.000

N/A

** Coil peak field ramps linearly from 1.3 t0 2.3 T in 10 acceleration cells. Subsequently peak fields are

all2.3T



Absorbers
Baseline Long Coil

Absorbers
Number ~75 ~60
Absorber Thickness 1.000 25.000
Absorber Material LiH IH2
Window Thickness 0.025 0.300
Window Material Be Al

Accelerated 1

~100
25.000
IH2
0.000
Al

y
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Accelerated 2

~100
25.000
IH2
0.000
Al
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Heat Load and Radiation []'C/[

~ 40 W/m beam power is lost into the walls in this lattice
= O(Similar) for baseline front end
= + radiation from RF cavities?
Total heat being dumped in superconductors may be significant
= (Can the baseline magnets be shielded? Not much room!
What about activation?
= Leptons, probably ok

Note that long coil option can be built with more relaxed < 30
A/mm? current densities

= May get worse if a bucking coil is used for shielding

= May get better if iron is used for shielding
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Continuous solenoid

Continous solenoid scares me

= | guess NF front end would be >> longest solenoid in the world
What happens if quench protection system (or something) fails
catastrophically?

= cfLHC

= Do we destroy entire front end and target solenoid?
Having some 'fire breaks' in the magnetic field might be a good
thing



W Vacuum, Diagnostics

= Need to look at services
= Vacuum system
= Diagnostics
= Needs space!

fac
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Magnet Shielding

We will probably want to shield all the magnets

= Stray iron, physicists, etc, outside the magnets can not steer the
beam

= Equipment in the same tunnel is not bathed in moderate magnetic
field

= Can lower the stored energy in the magnet - maybe

= Stray iron won't move around the hall when the magnets are
switched on

= Physicists' credit cards, etc, less likely to get wiped

fa



Absorbers

Liquid Hydrogen absorber may be challenging
= Windows
= Fragile
= Effect of RF cavities?
= Safety issue

Some issues need to be addressed for LiH absorber
= Cooling

= Heat load from muons

= Heat load from RF

= Some safety issues

fa
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Phase Rotation []'f/(

= | have not touched the phase rotation part of the lattice

=  Some RF cavities here have ~ high peak fields and sit in strong
magnetic fields

= | may be able to do better by capturing at a higher momentum
= Rather than having this rather aggressive section of acceleration
= | would like to try to improve the longitudinal match
= |nitial study makes it look non-trivial



Part 6 - Conclusions
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Conclusions 5";/[

It is possible to compete with the baseline lattice using RF
cavities that do not sit in strong magnetic fields

But it looks moderately expensive
= Either in muon rate
= Orin RF cavity power supplies
= (Or both)

| would like to try to improve things back in the phase rotation
system

| would like to do a high stats study

| need to look more closely into how much shielding | can really
get away with

The baseline design may be challenging to build
= | think this long chain of coupled solenoids will bite us!
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G4MICE and ICOOL

G4MICE

= Written for MICE experiment

= Based on G4 physics model
= Tracking
= Physics processes

= Adds field maps for multipoles, solenoids, rf cavities

= Plus some beam optics, mapping, analysis routines

= Last time | did a detailed study of the tracking was ~ 3 years ago

= Tracking by integration of Lorentz force with 4th order RK
ICOOL

= Written for simulation of cooling for Nu Factory and Mu Collider
= Internal physics and tracking routines

= Many different field models

= “Well known” by community

fa



Cell Model

|
Start End

= 3 mcell

Start with just magnets
Then add pillbox cavities
First look at rf field maps also
= Not in most of my simulations, but will want it sometime
Ambition to add Parmila solenoid field maps
Then add IH2
Don't look at windows yet

= But will want this also soon
= Presume if we have IH2 that's “good enough”
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netic field only
= X(step) - x(1e-5) [mm], where step is step size in tracking
= BiLinear interpolation from a field map

= Grid spacing 5 mminrand 1 mm n z
= Disable dynamic step size allocation
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x_hist 0
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= Use ICOOL field map in G4AMICE
= Compare tracking in ICOOL step=1e-5 m with G4MICE step=1e-4 m
= Compare G4MICE field map with ICOOL
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= Use G4MICE field map, all BiLinear interpolation
= Tracking in ICOOL with ICOOL field map, step size 1e-5 m
= Compare with tracking in G4MICE with G4MICE field map
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Choose grid size for magnetic field map

= Quite a hard cut-off as z grid size changes

= Gradual cut-off for radial grid size
Choose dz = 0.05 m, dr = 0.02 m, step=0.1 m
Enable dynamic step size allocation

Nominal error 1 mm
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= |ntroduce RF cavity

= Analytical model for pill box

= Compare ICOOL step size 1e-4 with G4MICE
x limited by magnetic field map size
0.1 m step size still ok
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Absolute value of field seen by particle travelling at ¢
Peak E-Field = 17.5 MV/m, peak B-field ~ 20 mT



x_rf_map_vs_pb
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Introduce RF field map
from superfish
= Compare with pillbox

= Look for self-
consistency
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= Now add liquid Hydrogen
= Stochastics switched off!
= Look at difference between G4MICE tracking and ICOOL

1
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= Switch on stochastics
= Track through 20 cm of IH2 in field map
= Look at distributions before and after IH2
= 1e5 muons with initial p=230 MeV/c, no transverse

fa
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- transverse amplitude < 30 mm
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=  Simulation codes compare well

= For identical field models, tracking in G4MICE is convergent on
tracking in ICOOL

= Physics processes in IH2 look similar

= Simulated cooling channel performance is similar for the two
codes




