

Costing Workshop Summary Chris Rogers, RAL, 30 Mar 2010

- Establish a common framework for costing of neutrino facilities
 - Compare Beta Beam, Super beam and Neutrino Factory on an equal footing
 - In context of EuroNu EU "funded" neutrino facility study
- Well attended by European Neutrino facility community
 - 30 registrants, mostly work package managers etc
 - (But all projects have more managers than workers it seems)
- Discussion:
 - How is project costing done in general
 - What goes in the costing and what is excluded
 - Practicalities which site, which currency, etc
 - Who has responsibility for which bit (e.g. detectors, proton driver)
 - Costing Tools
 - Case Studies/EuroNu cost status
- Some things loosely decided, TBD by costing subcommittee
 - First iteration another workshop in November/December
- Disclaimer: my own personal view

Project Costing in General

- Basic approach:
 - Split project into portions (Project Breakdown Structure) and cost portions based on parameter fit to historical data
 - Iterate at successively higher levels of detail until you run out of time or you are getting quotes from manufacturers
- E.g. for a house,
 - First costing based on number of floors, area, ground conditions
 - Second costing based on cost of each bathroom, kitchen, etc.
 - And so on
- For comparison with historical data
 - Use scale factor for relative costs between different countries
 - Currencies and economic factors (plumbers in UK are expensive)
 - Use scale factor for different years
 - Inflation and economic factors
 - Published tables e.g. costdataonline.com
- I expect we can't make a useful costing unless we at least break down to level of individual magnets, cavities, power supplies

More on Project Costing

- Need to enumerate risks
 - Expensive, high-risk items are bad
- Include cheapest solution as baseline
 - If risk mitigation is needed, include it as a (costed) alternative
- Cite sources for costings
- Cost at <todays date> in <project currency>
- Include non-financial criteria
 - Location, eco-impact, etc

Practicalities

- Discussed site independent cost with site-dependent terms added
 - Sounds difficult/impossible
- Suggestion of study at CERN (EuroNu context)
 - Do we do a study for CERN and a study for e.g. Fermilab?
 - We need to put everything in tunnels
 - Is this necessary anyway? Muons loose about 0.5 GeV/m in concrete, =>
 5 GeV muons need about 10 m shielding
 - Depending on pessimism of safety guys
 - Relies on engineering, civil engineering support from CERN
- Presumably costs in Euros or Swiss Francs (TBD)
- R&D to be costed but not included in the final total
- Include maintenance, operation, dismantling
- Manpower estimate included as FTE

Division of work

- Interface between overlapping work packages not entirely clear
 - Most Work Packages are not shown!

Costing Tool

- Costing tool to handle some bureaucracy
 - I couldn't find a URL so haven't looked at it directly
 - Actively supported by CERN
 - And they have promised to support us also
 - Used for CLIC they are keen for more users
 - About 1-2 years old
- Keeps a list of Project Breakdown Structure
 - Version control
 - Handles currency conversion, Economic factors conversion, etc
 - Various reporting tools
 - Export to excel, etc
- It does not tell you the cost of an RF cavity, magnet, etc
 - AFAIK

Costing Tool

Case Studies

- Summary of case studies
 - Needs contribution from hardware experts involved in design
 - Takes significant resources
 - Needs quite a bit of detail
 - Determine tunnel layout => determine tunnel size => CE cost
- Speaking qualitatively
 - NuFact is most organised, most advanced
 - Technical solutions, lattice design + R&D programmes in place
 - But NuFact has most accelerator subsystems, most work
 - NuFact costing aim:
 - Capital cost, staff effort, timescale
 - Uncertainty, risk analysis
 - Present, and prepare, cost for different funding agencies, etc

Level 2	Level 3
	proton driver
	pion production
accelerator	proton beam dump
	decay region
	phase rotation region
	bunching region
	cooling channel
	cooling→linac transfer line
	muon linac
	linac→RLA 1 transfer line
	(double chicane 1)
	muon RLA 1
	linac→RLA 2 transfer line
	(double chicane 2)
	muon RLA 2
	RLA 2 \rightarrow FFAG transfer line
	muon FFAG
	$FFAG \rightarrow ring transfer line$
	muon decay ring

E.g. CLIC

Using the above model, here's the klystron cost per MW (peak)

- Blue: present state of the art
- Red: assuming a major investment into the development of a dedicated 30 MW tube