THE INTERNATIONAL DESIGN STUDY FOR THE NEUTRING FACTORY

Muon Front End Status

Chris Rogers on behalf of Muon Front End group, Accelerator Science and Technology Centre (ASTeC), Rutherford Appleton Laboratory

Proton beam strikes target

- Muon Front End baseline description
 - Longitudinal drift
 - Buncher
 - Phase-Energy Rotation
 - Ionisation Cooling
 - Hardware design
 - Performance
- Risks and mitigations
 - RF break down in magnetic fields
 - Transmission losses and secondary particles
- Future Plans

Proton beam strikes target

Proton beam strikes target to produce pions

Micro bunch structure (single rf bucket)

Taper, Decay and Drift

Cool

 Adiabatic B-field taper from Hg target to longitudinal drift and pion decay

 Longitudinal drift in ~1.5 T, ~100 m solenoid

Allow bunch to lengthen for RF

Rotate

Bunch

Drift

Adiabatic Buncher

- Adiabatically bring on RF voltage
 - Introduce "micro bunches"

Phase-energy rotation

Cool

Rotate

Bunch

Phase-energy rotation

- RF out of phase with bunches
- Higher energy head receives negative RF voltage

Lower energy tail receives positive RF voltage

Taper

Drift

Ionisation Cooling

Ionisation Cooling

- Reduce transverse beam size
- Place material in the beam line to reduce energy
- Replace energy using RF cavities only in longitudinal direction
- Reduces transverse beam size (emittance)

Drift/Bunch/Rotator Hardware

- Drift/Buncher/Rotator shares 1.5 T solenoidal field
 - Plan for large aperture superconducting coils
 - May revise to normal conducting (see comments on losses)
- Normal conducting RF
 - Range 200-320 MHz
 - Up to 12 MV/m
 - Accommodates lengthening macrobunch
 - Sealed by Be windows

Cooling Hardware

- Superconducting coils for transverse focussing
 - Alternating field +/- 2.8 T on adjacent coils
- Normal conducting RF for re-acceleration
 - 201.25 MHz
 - 15 MV/m
 - LiH provides ionisation cooling
 - Be coating on LiH provides electromagnetic seal for RF

Baseline performance

- Good baseline performance
 - Count number of muons in 30 mm transverse and 150 mm longitudinal acceptances
 - Motivated by accelerator acceptance
 - Capture 0.2 muons per 8 GeV proton
 - Small transverse emittance
- Transverse capture robust
- Some longitudinal leakage

Code and Lattice Validation

- Mostly automated monitoring of physics process model
 - Compare different versions of ICOOL and G4Beamline
 - Shows some significant variation over time
- Verification of lattice performance shows good consistency
 - Using, for example, g4beamline 2.06 and ICOOL 3.20

Hardware tests

- Integration testing of hardware at Fermilab MUCOOL Test Area
 - Tests of RF cavities at 805 and 201 MHz
 - Tests of cavities in magnetic fields
 - Effects of surface treatments on cavities
 - Enhancements to basic RF technology
 - Pressurised RF cavities
 - Magnetically insulated cavities
 - Hydrogen absorber technology testing
- System testing of hardware in Muon Ionisation Cooling Experiment
 - Under construction at Rutherford Appleton Laboratory
 - Test physics model
 - Test integration of RF, superconducting magnets and liquid Hydrogen and Lithium Hydride absorbers
 - Test ease of engineering

RF Problem

- We need lots of RF in the front end
 - We have significant longitudinal manipulations to perform
 - lonisation cooling needs strong acceleration
- We need lots of solenoidal focussing in the front end
 - Try to contain large transverse emittance beam
 - Ionisation cooling needs tight focussing to reduce multiple scattering effects
- Leads us to overlapping solenoidal focussing with RF cavities
 - RF cavities sit in ~1-2 T fields
- Some empirical evidence that RF cavities and magnetic fields don't co-exist well
 - Somehow the B-field induces breakdown in the RF cavity
 - Possibly limits peak field to ~ 1/2 expected limit in > 1 Tesla fields
 - Not well understood, many caveats
- Choose highest performing lattice
- Prepare risk mitigating options

HP RF lattice

fact

- High Pressure RF lattice
 - Use high pressure Hydrogen to suppress breakdown
 - Provides some cooling medium
 - Supplement with LiH
 - Add Be safety windows to segment large pressurised H₂ volume

Insulated lattice

fact

- Magnetically insulated lattice
 - B-field perpendicular to E-field
 - Suppress break down on RF cavities
- Similar performance to old FS2A lattice
 - Requires more RF power
 - Coupling between cavities may be a problem

fact V

- Reduced magnetic field on RF cavities
 - May enable higher accelerating voltage
- Slightly higher equilibrium emittance

Beam power

- Beam power normalised to 4 MW
 - Rather high
 - Obviously significant losses
- Beam power of secondaries is rather high

- Try to constrain hadronic losses
 - Prevent activation
 - Permit hands on maintenance
- Prevent heat deposition on superconducting equipment
 - Cost of cryogenic cooling
 - Quench limit

Mitigation Strategy - Preliminary

- Clearly heat deposition is significant
- Three issues:
 - Activation of the linac
 - Heat load on superconductors
 - Radiation damage (to e.g. superconductors)
- These losses are 2-3 orders of magnitude too high
- Try:
 - Proton absorber for low momentum protons
 - Protons stop quicker than pions/muons in material
 - Chicane for high momentum particles
 - Transverse collimation
 - Take out particles with large transverse amplitude at a convenient point away from sensitive hardware

Muon Chicane - Preliminary

- Bent solenoid chicane
 - One chicane for both signs
 - Optics still under optimisation
 - Removes protons with p > 600-700 MeV/c
- Proton absorber effectively removes low momentum protons
 - Some further optimisation possible
- Beam dumps need work
 - How does beam get out of solenoids?
- Optimisation continues

proton with r<400.0 mm

mu+ with r<400.0 mm

Future Plans

- Potential issue of RF in high magnetic field
 - Await results from Fermilab MUCOOL Test Area
 - Alternatives look promising
- Transmission losses can be controlled effectively
 - Further optimisation possible
- Further work required in several areas
 - Alignment and tolerance study
 - Instrumentation
 - Engineering design for more accurate costing

Conclusions

- Muon front end design is mature
- Good capture efficiency for muons
- New risks identified and mitigating options developed