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—— Bunching Mode

—— No RF

= | get quite a bit of beam loss in my 2:0_
cooling channel Emni
= Significant even in the absence of = ol
absorbers ok
= Exarcerbated by introduction of RF 2000
cavities 1900%—

= Nb “Bunching mode” here => 17.5 MV/m 1800 o

running at 0° phase
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= Want to look at optical losses in absence of absorber material

= Rather larger bucket than in normal running

= Expect these optics-induced losses to be worse in normal running
= Try using mapping technique to study optical heating
= Expand (x,y,t;px,py,E) as a mapping across a cooling cell

= |gnore material effects

= Focus in this talk on mapping techniques
= Not so much about lattice development here
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Linear Least Squares a'f/(

Tracking

Mapping
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= First consider algorithms mapping 1D space
= e.g. X ->X_.as a4th order polynomial

= Consider Linear Least Squares fit of input particle data to output
particle data after tracking through G4MICE



Linear Least Squares -
Numerical Diff for 1st term
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= Can improve the fit by numerically differentiating at x=0
= Force the polynomial 1st derivative here
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E 40 Tracking

Mapping
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= Alternatively try applying a cut on particles with large amplitudes

= Reduce the size of the amplitude acceptance until difference
between fit and true data is small



Linear Least Squares - Numerical
Diff for 1st term and Chi2 Cut
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= Now force 1st derivative and take chi2 cut
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Linear Least Squares - Numerical fad}(’
Diff for 1st term and Chi2 Cut T
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=  Convergence as a function of chi2 limit
= Seems to converge reasonably well, better w/o numerical derivative

= Prefer not to force the 1st order differential
= Probably because error in numerical derivative
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Longitudinal phase space T¢

Ist order polynomial

= Consider a “real” application - -
longitudinal phase space v
= Fire shells of particles at various o
amplitude 10°

= Look at (mapping - tracking) as a function
of distance from the reference trajectory

= |n general, higher order polynomials =>

3rd order polynomial

better fit 1o
= At some point adding extra terms doesn't o
really help o

= Using the trick of applying fit only in a
region where the polynomial matches
tracking results

7th order polynomial

Distance (Mapped - Tracked)/Distance from reference particle

Distance from reference particle [au]



Constrained polynomial

= Try a slightly different algorithm
= As above, but instead of fitting to an nth
order polynomial, I:
= Fit to a 1st order polynomial

= Fit to a second order polynomial forcing
first order terms to be as above

» Repeat up to nth order
= Fit looks a bit better...

= Equivalent to “forcing differential” in 1D
example
= But can include higher polynomial terms

3rd order polynomial

Sth order polynomial

Distance (Mapped - Tracked)/Distance from reference particle

Distance from reference particle [au]
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Transverse phase space T¢

Ist order polynomial

= (Can extend to 4D (x,y,px,py)

= Main contribution from 3rd order
polynomial terms

= Fits with beam optics

= |n theory expect 3rd order spherical
aberrations

= Slight improvement from 4th order terms

= No real contribution beyond 4th order

= Presumably algorithm starts running out of
steam beyond 4th order

= No improvement from constraining at
lower order

2nd order polynomial

3rd order polynomial

Distance (Mapped - Tracked)/Distance from reference particle

2
Distance from reference particle [au]



3rd order coefficient

Centre Length [mm]

Non-Linear Terms vs End Field
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These non-linear terms are quite

dependent on length of solenoid
fringe field

For very short fringe fields 3rd order
terms become large

= d?B /dz* becomes large
= e.g. consider tanh model for B (r=0)
= B =tanh[(z-z,)/A] + tanh[(z-z,)/A]



Stability vs tracking - x vs px
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Tracking Step Error

= |[s this an effect from tracking accuracy?

= Estimate algorithmic stability by looking at coefficient variance after
calculation with several sets of particles

= Reasonably stable so long as tracking is ok
= error on polynomial coefficient ~ 1%

= (Can do better with better set of particles - this is a Gaussian beam)



6D Mapping

= (Can extend to 6D (t,E,x,y,px,py)
= |n 6D need to constrain at lower order
= Non-linear terms at 2nd order

= 3rd order contribution doesn't make much
difference

= Algorithm running out of steam even at 3rd
order...

10

.10
b
107
102
a0°
10
10°
10°®
107
10°®
10°
10-10

Distance (Mapped - Tracked)/Distance from reference particle
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2nd order polynomial
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E.g. Effect of Momentum [ﬁ([
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E.g. Effect of Momentum

Ist order polynomial
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Conclusion

Focus on algorithms here
= |nteresting algorithms developed
= Enable study of non-linear terms in a tracking code

Try to use them to develop some lattices...
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