First Look at Muon Chicane

Chris Rogers,
ASTeC,
Rutherford Appleton Laboratory

Overview

- Previously showed a proton absorber can take out protons with momentum <~ 500 MeV/c
 - "Shallow" study, needs more work
- Now go on to look at what can be achieved with chicane
 - Aim is to take out all particles with momentum >~ 500 MeV/c
 - Remember that muon momentum acceptance is ~ 100 400 MeV/c
- Preliminary design
 - Considerations
 - Initial parameter scans
 - Setting up for optimisation

Chicane concept

- Concept is "pair of double chicanes"
 - High energy particles hit a beam dump
 - Chicane area becomes radioactive
 - Probably part of target remote handling area
 - Beam dump has to handle significant beam energy
- Concentrate here on chicane optics (first look)
 - Propose using bent solenoid optics
 - Good acceptance for this momentum range
 - e.g. used by mu2e experiments
 - e.g. used by 6d cooling channels

Chicane optics

- First try to get reasonable performance for single sign
 - Then start worrying about switch yards, beam dumps, etc
- Model with dipole field superimposed on solenoid field
 - Allows to conveniently change dipole field independent of solenoid
 - Would consider tilted solenoid later
 - Select dipole field to ~return nominal (200 MeV/c) particle to axis
- Three independent parameters
 - Number of coils in the bends
 - Bending angle per coil
 - Solenoid field strength

First Go

- Try with large aperture solenoids (0.6 m)
 - Displace beam by ~2 coil diameters (probably a bit too much)
 - Try:
 - 10 coils per bend with
 - 3° bend angle between coils
 - Use baseline 1.5 T B_z
 - Roughly correct momentum acceptance
 - But rather large radial displacement
 - Question tracking accuracy at low p

Tracking stability

- Low momentum behaviour looks rather like unstable tracking
 - (G4 4th order Runge Kutta)
- No apparent change when I go from 100 mm step size to 1 mm step size
 - dx ~ 0.1 mm

Tracking stability (Cont)

- Calculate 6D transfer matrix
 - Numerical derivative
 - Planes in z
 - 200 MeV/c muons
- Note some variation for 100 mm vs 1 mm steps
 - det(M) should be == 1
- Need some work to understand what causes instability
- For now work with 1 mm step size

Mo

Momentum Acceptance

- How does acceptance vary?
 - Look at transmission of particles initially on-axis
 - Count r > 500 mm as rejected
 - Increasing Bz improves acceptance
 - Increasing dθ worsens acceptance
 - Increasing bend length worsens acceptance

Amplitude increase vs lattice

180

160

80

40

180

160

40

20

- Guestimate emittance growth
 - Look at A_⊤ of reference trajectory
 - Don't count particles with $A_{\tau} > 200 \text{ mm}$
 - $\delta \epsilon_{\rm T} \sim \delta A_{\rm T}/4$
- Softer dθ looks like promising route
 - Needs more study

200

0 400 500 Momentum acceptance [MeV/c]

100

First optimisation

First optimisation

Plans

- Looks like softening the bending angle gives better transmission
- Some question over tracking accuracy
- Aim is to have a first optics design ready by IDS meeting in January
 - Finish optimisation
- Then look at switch yard, beam dumps, etc
 - Can't dump beam through coils
 - Can't build coils in aperture of -ve polarity beam
 - Integration with proton absorber
 - Integration with transverse collimation