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Talk outline

* FronTier-MHD code: theory and implementation.

* Numerical simulation of conducting liquid jets in magnetic fields and the
muon collider target

» Modeling of the equation of state with phase transition (Riemann
problem for such EOS)

« Numerical simulation of the mercury jet interacting with proton pulses.

* Plans for future research.
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Schematic of the Muon Collider Target
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3D FronTier Structures

Interfaces model different types of discontinuities in a medium such as shock
waves in gas dynamics, boundaries between fluid-gas states, different fluids or

their phases in fluid dynamics, component boundaries in solid dynamics etc.

Front tracking represents interfaces as lower
dimensional meshes moving through a volume
filling grid. The traditional volume filling finite
difference grid supports smooth solutions
located in the region between interfaces and
the lower dimensional grid or interface defines
the location of the discontinuity and the jump in
% the solution variables across it.
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Resolving interface tangling by using the grid based method
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The FronTier code:
capabilities of the interior solvers

FronTier uses high resolution methods for the interior hyperbolic
solvers such as Lax-Wendroff, Godunov and MUSCL and the following
Riemann solvers:

« Exact Riemann solver

 Colella-Glaz approximate Riemann solver

* Linear US/UP fit (Dukowicz) Riemann solver

« Gamma law fit

FronTier uses realistic models for the equation of state:
 Polytropic Equation of State

» Stiffened Polytropic Equation of State

» Gruneisen Equation of State

« SESAME Tabular Equation of State
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The system of equation of compressible
magnetohydrodynamics
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The interface condition

Interface conditions for the normal and
tangential components of the magnetic field

n-(B,-B,)=0,

nx(Hz—H1)=4—”K,
C

where B=uH.
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Approximations:
|. General case

General approach: the magnetic field is not constant in time.

Time scales: acoustic waves time scale =7 microseconds;
magnetic diffusion time scale = 33 microseconds
Alfven waves time scale = 70 microseconds
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Approximations:
ll. Constant in time magnetic field

The magnetic field is constant in time. The distribution of currents can be
found by solving Poisson’s equation:

J:G(V¢+luxBj

C
|
Agp=——V-(uxB),
C
with o :—l(uxB)-n
on| T C
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Magnetohydrodynamics of Multi Fluid Systems:
Numerical Approach

* The system of MHD equations contains the hyperbolic subsystem (the mass,
momentum and energy conservation equations) and the parabolic (the
magnetic field evolution equation) or elliptic (Poisson’s equation for the current
density distribution) subsystems.

* The hyperbolic subsystem is solved on a finite difference grid in both
domains separated by the free surface using FronTier's interface tracking
numerical techniques. The evolution of the free fluid surface is obtained

through the solution of the Riemann problem for compressible fluids.

* The parabolic subsystem or elliptic subsystems is solved using a vector finite
elements method based on Whitney elements. The grid is rebuilt at every time
step and conformed to the evolving interface.
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Finite element mesh generation with interface
constraints: Point shift method.

1. Distortion of appropriate mesh blocks into irregular, convex hexahedra
by shifting appropriate corner nodes to be coincident with the
triangulated surface.

2. Appropriate redistribution of surface triangles to ensure that surface
triangles are coplanar either with shifted hexahedra faces or “interior
diagonal” planes.

3. Tetrahedralization of all (regular and irregular) grid blocks, creating and
modifying a regularly indexed grid to provide a restricted optimized
match to a triangulated tracked surface.

Advantages: preserves rectangular index structure.
Disadvantages: not robust (at present) in parallel.
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Finite element mesh generation with interface
constraints

Triangulated tracked surface and
tetrahedralized hexahedra conforming to
the surface. For clarity, only a limited
number of hexahedra have been displayed.
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solenoid
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Mercury target in 20 T magnet
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Mercury target in 20 T magnet
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fusion curve domain of interest
- 1
critical point
Solid Liquid

triple point
VAPOr pressure curve

Vapor

sublimation curve

gram

Critical point: 7, =1750K,
P.=172MPa, V, =43cm’mol’
Boiling point: 7, =629.84K,
P, =0.1MPa, p=13.546g-cm”

Analytical expression for the
vapor pressurc curve

P =133 3exp(18.41-7318/T),
[P]=Pa, [T]=K
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Equation of state

An EOS is a relation expressing the specific internal energy £ of a material as
a function of the entropy S and the specific volume V. E(S,V).

The pressure P and temperature 1 are first derivatives of the energy £ :

P(V’S)Z_S_Ili : T(V,S)zg—f;j
s 4

in accordance with the second law of thermodynamics: 7dS=dE+PdV.

The second derivatives of the internal energy are related to the adiabatic
exponent 7Y, the Gruneisen coefficient [ and the specific heat ¢ .
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SESAME tabular equation of state

m The SESAME EOS is a tabular equation of state which gives the
thermodynamic functions for a large number of materials, including gases,
metals and minerals, in a computerized database.

m The SESAME EOS includes the following tables:

201 Tables. The 201 tables contains 5 floats which are the atomic number,
atomic weight, density, pressure and internal energy at the normal conditions.

301 Tables. The 301 tables is a database for the pressure, internal energy and,
IN some cases, the free energy as functions of the temperature and density.

401 Tables. The 401 tables contain data for the thermodynamic functions at

the liquid/vapor phase transition.
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Thermodynamic properties of mercury,
ANEOS data
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Thermodynamic properties of mercury,
ANEOS data
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