MUON TARGET STUDIES: TAPERED CAPTURE SOLENOID

HISHAM KAMAL SAYED

Physics Department

BROOKHAVEN NATIONAL LABORATORY

Sept. 25, 2012

OVERVIEW

Target layout

- Current baseline parameters
- Solenoid Taper field calculations
- MARS simulation setup
- Tracking through FE with ICOOL
- Muon count
- Transverse position & Momentum distribution
- Conclusion

TARGET SYSTEM CURRENT BASELINE DESIGN

- Production of 10^{14} µ/s from 10^{15} p/s (≈ 4 MW proton beam)
- Low-energy π's collected from side of long, thin cylindrical target
- Solenoid coils can be some distance from proton beam.
 - ➤ ≥ 10-year life against radiation damage at 4 MW.
- Proton beam readily tilted with respect to magnetic axis.
 - → Beam dump (mercury pool) out of the way of secondary π 's and μ 's.
- Shielding of the superconducting magnets from radiation is a major issue.
 - Magnet stored energy ~ 3 GJ

5-T copper magnet insert; 10-T Nb3Sn coil + 5-T NbTi outsert. Desirable to eliminate the copper magnet (or replace by a 20-T HTS insert).

TARGET PARTICLE PRODUCTION WITH 15 T PEAK SOLENOID FIELD

- > Particle-capture requirement ($P_t \le 0.225 \text{ GeV/c}$)
 - ➢ B×r = 20 T × 7.5 cm = 150 T-cm
 - \blacktriangleright B × r = 15 T × 10 cm = 150 T-cm
- Fixed-flux requirement (Aperture requirement)
 - ▶ $B \times r^2 = 20 \times 7.5^2 = 1125 \text{ T-cm}^2$
 - ► $B \times r^2 = 15 \times 10^2 = 1500 \,\mathrm{T} \cdot \mathrm{cm}^2$
- > MARS simulations with 15-T peak field & new aperture settings (taper radius r = 30 cm at all z)

Particle loss due to scrapping with beam pipe !

4

CURRENT TARGET OPTIMIZED PARAMETERS

(X. Ding et al.)

≻Hg Target

- \triangleright θ_{Target} =0.137 rad
- ➢ R_{Target}=0.404 cm

➢Proton Beam

- ≻ E=8 GeV
- \triangleright θ_{Beam} =0.117 rad
- > $\sigma_x = \sigma_y = 0.1212$ cm (Gaussian Distribution)

➤Solenoid Field

- ▶ IDS120h \rightarrow 20 T peak field at target position (Z=0)
- Aperture at Target R=7.5 cm End aperture R = 30 cm
- → Fixed Field Z = 1862.0 → Bz=1.5 T

Production: Muons within energy KE cut 40-180 MeV
 3.27 X 10⁴ (N_{ini}=10⁵)

ANALYTIC FORM FOR TAPERED SOLENOID

Inverse-Cubic Taper

$$B_{z}(0, z_{i} < z < z_{f}) = \frac{B_{1}}{\left[1 + a_{1}(z - z_{1}) + a_{2}(z - z_{1})^{2} + a_{3}(z - z_{1})^{3}\right]^{p}}$$

$$a_{1} = -\frac{B_{1}}{pB_{1}} \qquad \qquad a_{2} = 3\frac{(B_{1}/B_{2})^{1/p} - 1}{(z_{2} - z_{1})^{2}} - \frac{2a_{1}}{z_{2} - z_{1}}$$

$$a_3 = -2 \frac{(B_1 / B_2)^{1/p} - 1}{(z_2 - z_1)^3} + \frac{a_1}{(z_2 - z_1)^2}$$

Off-axis field approximation

$$B_{z}(r,z) = \sum_{n} (-1)^{n} \frac{a_{0}^{(2n)}(z)}{(n!)^{2}} (\frac{r}{2})^{2n}$$
$$B_{r}(r,z) = \sum_{n} (-1)^{n+1} \frac{a_{0}^{(2n+1)}(z)}{(n+1)(n!)^{2}} (\frac{r}{2})^{2n+1}$$
$$a_{0}^{(n)} = \frac{d^{n}a_{0}}{dz^{n}} = \frac{d^{n}B_{z}(0,z)}{dz^{n}}$$

- Beam Pipe with constant R=30 cm (eliminate particle loss due to scrapping)
- Beam Pipe material changed to balckhole to speed calculations
- Added subroutine to m1510.f (FIELD K. McDonald) to calculate the field using inverse cubic equations
- N_{proton}=5×10⁵
- Store particles information at z=0
- Select (μ⁺ k⁺ π⁺)

BROOKHAVIEN

1- Taper solenoid field with different settings $B_z(r=0) \ 20 \rightarrow 1.5 \ T$ Taper Length $8 \rightarrow 43 \ m$ $B_z(r=0) \ 15 \rightarrow 1.5 \ T$ Taper Length $8 \rightarrow 43 \ m$ $B_z(r=0) \ 15 \rightarrow 1.8 \ T$ Taper Length $8 \rightarrow 43 \ m$ $B_z(r=0) \ 15 \rightarrow 2.0 \ T$ Taper Length $8 \rightarrow 43 \ m$

2- ICOOL applied aperture for decay region R_aperture= 0.4 m & 0.3 m to end

3- Good particles are those who satisfy the following conditions/cuts

- 1- Survived the phase rotator and cooling sections
- 2- Fall within required acceleration acceptance cuts
 - 0.1 <Pz< 0.3 GeV
 - Transverse cut R < 0.3 m
 - Longitudinal cut 0.15 m

Tapered field using inverse-cubic field (*P* = 1)

Mesons count at z=50 m with K.E. 40-180 MeV

Muons within required acceleration acceptance cuts after cooling section

- 0.1 < P_z< 0.3 GeV
- Transverse cut R < 0.3 m
- Longitudinal cut 0.15 m

HUU

TRANSMISSION THROUGH FRONT END

Pz & Σ cut

Trans, Pz, & Σ cut

BROOKHAVEN

- 1- Taper solenoid field: 20 \rightarrow 1.5 T over 15 m
- 2- ICOOL applied aperture for decay region R_aperture= 0.4 m & 0.3 afterwords
- 3- Good particles are those who satisfy the following conditions/cuts
 - 1- Survived the phase rotator and cooling sections
 - 2- Fall within required acceleration acceptance cuts
 - 0.1 <Pz< 0.3 GeV
 - Transverse cut R < 0.3 m
 - Longitudinal cut 0.15 m

Particle distribution Taper Length =15 m

CONCLUSION

- Mesons count at 50 m increases with longer taper
- Bz=15→1.8T produces as much mesons counted at 50 m as
 Bz=20→1.5T
- 15 T peak field case has ~ 7% less yield at end of cooling though it produces about the same number of muons at the target.
- > No clear mismatch in the lattice that shows huge particle loss
- Particle radii extends from 0.1 at z=0 to 0.3 m at z=15 m
- Particles transverse momenta extends from 0.3 at z=0 to 0.1 m at z=15 m

Taper Length	End of Decay Channel z=50 m No cuts	End of FE z=265 m Eclac acceleration acceptance cuts
Short		Better
Long	Better	