FRONTEND DESIGN & OPTIMIZATION STUDIES

HISHAM KAMAL SAYED BROOKHAVEN NATIONAL LABORATORY May 29, 2014

Collaboration:

J. S. Berg - X. Ding - V.B. Graves - H. Kirk - K. McDonald - D. Neuffer - R. B. Palmer – P. Snopok - D. Stratakis - R. Weggel

FRONT END DESING & OPTIMIZATION

OUTLINE

Goal : Optmize number of useful muons and limit the proton beam power energy transmitted to the first RF cavity in the buncher Involved systems:

- Carbon target geometry
- Capture field
- Chicane design
- Be absorber
- 1- Target geometry parameters:

Carbon target length, radius, and tilt angle to solenoid axis

- 2- Target Capture field: constant field length taper length end field
- 3- Chicane parameters: Length curvature focsuing field
- 4- Be absorber thickness and location

5- Energy deposition in the target area + Chicane will be evaluated and involved in the optimization – future work.

Challenges with muon beams:

- Short lifetime ~ 2 μ s

- Require fast and aggressive way of reducing the muon beam transverse and longitudinal emittance to deliver the required luminosity

Production and acceleration of muon beam

High energy proton beam on Hg or graphite target

Captured pion beam has a large emittance Pions decay into muons with even larger emittance

TAPERED CAPTURE SOLENOID OPTIMIZATION

Inverse-Cubic Taper

- Initial peak Field B₁
- Taper length z
- End Field B₂

$$B_{z}(0, z_{i} < z < z_{f}) = \frac{B_{1}}{[1 + a_{1}(z - z_{1}) + a_{2}(z - z_{1})^{2} + a_{3}(z - z_{1})^{3}]^{p}}$$

$$a1 = -\frac{B_{1}}{pB_{1}} \qquad a_{2} = 3\frac{(B_{1} / B_{2})^{1/p} - 1}{(z_{2} - z_{1})^{2}} - \frac{2a_{1}}{z_{2} - z_{1}}$$

$$a_{3} = -2\frac{(B_{1} / B_{2})^{1/p} - 1}{(z_{2} - z_{1})^{3}} + \frac{a_{1}}{(z_{2} - z_{1})^{2}}$$

- Impact of the Peak field on the number and phase space of the captured pions
- Impact of taper length on the number and phase space of the captured pions/muons
- Impact of the end field on the number of captured muons

Target Solenoid on axis field

NEW SHORT TARGET CAPTURE WITH REALISTIC SUPERCONDUCTING MAGNETS

5/29/14

http://physics.princeton.edu/mumu/target/hptw5_poster.pdf

6

Target geometry parameters (channel includes target + chicane+ decay channel):

 \rightarrow Carbon target length -- radius -- tilt angle to solenoid axis

- \rightarrow Proton beam size
- Objective: optmize at z=70 m

 $\Sigma \pi + \mu + \kappa$ within p_z < 450 MeV/c (to compensate for the Be absorber effect) p_t < 150 MeV/c

Initial lattice in G4Beamline – using GEANT4 physics list QGSP (Benchmarekd with exp. data – Bungau *et al* PRSTAB 2014)

- \blacktriangleright B_z = 20 2.0 T over taper length = 5.0 m
- > Initial protons K.E. = 6.75 GeV σ_{t} = 2 ns
- \succ Initial optmization of the beam aperture ightarrow 12 cm
- Using optmized short taper of 5 m
- Tracking includes target + chicane + decay channel
 - The optmization run 6 hours on 240 cores at NERSC using Multiobjective – Multivariable parallel genetic algorithm

7

Optimal working point 1-3 degrees

Optimal working point 1-2 mm

BOOKH VIEN

Optimal working point for C-target

- Proton beam size 1-2 mm
- ➤ C-rod Length 80 cm
- C-rod radius 1 cm

Beam + target angle to solenoid axis 2-3 degree

X. Ding: More about MARS simulation of production in today's afternoon talk

Emittance growth due to betatron oscillation decohenrce:

- Pions created at the target
 - Small radial extent (small transverse emittance)
 - Large spread in energy and axial point of origin
- Particles with different energy and different transverse amplitude rotate over the transverse phase space at different oscillation frequencies.
- Strong solenoid field stabilizes the emittance growth by reduction of axial extend
- The final projected transverse emittance is smaller for higher fields

MARS Simulation of $\pi^{\scriptscriptstyle +}$ & $\mu^{\scriptscriptstyle +}$ production from 8 GeV proton beam on Hg target.

- Emittance calculation from covariance matrix
- particle count at end of the target

BROOKH&VEN

Optmization of the target end field and decay channel – (no buncher- rotator RF)

BROOKH AUEN

Muon count within energy cut at end of decay channel

Adiabatic condition:

length scale over which the magnetic field changes is large compared to betatron wavelength of the helical trajectory of a particle

 $\frac{2p}{eB^2}\frac{dB}{dz} << 1$

Muon count at z = 50 m increases for longer solenoid taper

MARS15 Simulation: Counting muons at 50 m with K.E. 80-140 MeV

BUNCHER AND ENERGY PHASE ROTATOR

Target: π production

Drift: π 's decay to μ 's + creation of time-energy correlations

Adiabatic bunch:

Converts the initial single short muon bunch with very large energy spread into a train of 12 microbunches with much reduced energy spread

Energy phase rotatation: Align microbunches to equal energies - RF 232 to 201 MHz - 12 MV/m Transverse ionization cooling: RF 201.25 MHz

LONGITUDINAL PHASE SPACE DISTRIBUTIONS (SHORT VERSUS LONG TAPER)

Temporal difference between the arrival time at a position z of a particle with a nonzero transverse amplitude and that of a particle with zero transverse amplitude

Z

$$\Delta t \approx \frac{p_\perp^2 E}{2c^2 p^3} \int_0^z \frac{B_z(z')}{B_z(0)} dz'$$

Time spread dependence on taper length

Time Spread increase by 90%

Implication on projected emittance

- Projected transverse emittance did not change dramatically
- Longitudnal emittance decreases more dramatically

FRONT END PERFORMANCE

Muon count within acceleration acceptance cuts at end of ionization cooling channel

Long Solenoid taper:

- More particles
- ▶ Large time spread \rightarrow large longitudinal emittance

Short Solenoid taper:

- > Smaller time spread \rightarrow smaller longitudinal emittance
- ➢ Fits more particles within the acceptance of buncher/rotator

Shorter taper provide better quality muons \rightarrow More muons at end of ionization cooling channel

BROOKHAVIEN

Muon+/proton

Expensive objective evaluations on CRAY: (In collaboration with LBNL)

- High performance parallel environment: N cores > 1000
 - Run parallel evaluations of the objective functions (Parallel Evolutionary algorithms)
 - Each evaluation of the objective run in parallel to limit the cost of every evaluation (parallel Icool – G4BL, MARS.. etc.).
- Implemented algorithm:
 - Parallel Differential Evolutionary Algorithms

Muon Front End Global Optimization

- Multivariable optimization of the Muon Accelerator Front End:
 - Optimal taper length
 - Optimizing the broad band match to the 4D ionization cooling channel

End Field Limitations:

- Operation of RF cavities in magnetic fields

Momentum distribution of "useful muons" at end of phase rotator

FRONT END PERFORMANCE AT DIFFERENT END FIELDS

LABORATORY

5/29/14

PROTON BUNCH LENGTH

Muon yield versus Proton Bunch Length

Limit at which short taper losses advantages

 $\sim 3\%$ loss per 1 nsec increase in bunch length

IONAL LABORATOR

REALISTIC COIL BASED FRONT END SOLENOID

Suppression of stop bands in the Decay Channel:

Tracking muons through decay channel 10 cells (50 m) optimize magnet design for best performance

BROOKHAVEN

2

Short taper (6 m) integrated with the new chicane from Pavel's G4BL lattice (same parameters as in ICOOL)

- 2 Started optimizing the chicane parameters (initial values 2 D. Neuffer's ICOOL lattice)
 - Chicane length L (initial value L = 6.0)
 - Chicane radius of curvature h (initial value = 0.05818 1/m)
 - Be absorber length (initial value = 100.0 mm)
 - On-axis field is a free parameter optimization will be carried for B= 2.0 2.5 3.0 T
 - Chicane aperture 40 cm (might be a free parameter as well)
- Objectives \rightarrow minimize total KE of transmitted protons Σ KE_{protons}

→ Maximaiz number of transmitted muons $\Sigma \pi + \mu + K$ within 0 <pz < 450 MeV/c (to compensate for the Be absorber effect) & 0 < pt < 150 MeV/c

Run 100 K particles through the chicane with initial parameters $\Sigma \text{ Ke}_{\text{protons}} = 29 \text{ GeV } \& \Sigma \text{ N}_{\text{mu}} = 4377$

5/29/14

Run 500 K particles through the chicane with automated optmization algorithm

23

Run 500 K particles through the chicane with automated optmization algorithm

 $B_0 = 2.5 T$

5/29/14

Run 500 K particles through the chicane with automated optmization algorithm

Selected solutions from the chicane optmizations

	Bend	=	2.	0	T
--	------	---	----	---	---

н	L	Be thickness [mm]	Σ Ke_{protons} [GeV]	Σ N _{mu}
0.057587951	10.23983	101.88068	0.547549	13507
0.016493698	26.35389	253.06591	0.219561	13151

Bend = 2.5 T

н	L	Be thickness [mm]	Σ Ke _{protons} [GeV]	Σ N _{mu}
0.020371496	29.21715	171.05875	0.00846724	15259
0.034974192	16.86029	210.25555	0.0737864	13803

	н	L	Be thickness [mm]	Σ Ke _{protons} [GeV]	Σ N _{mu}
Г	0.025801926	24.19325	200.9732	0.492047	18730
	0.040128693	10.19255	678.29223	1.71021	10426

Bend = 3.0 T

- New objective for front end optimization
 - Handle excesseive proton beam + unwanted secondaries
 - Capture as much muons
- Energy deposition has to be integrated in the optimization study
 - Partitioning of energy deposited in
 - Chicane
 - Be absorber
- Optmization includes
 - Target geomtery
 - Chicane field + chicane geomtery
 - Be absorber
 - Re-tune buncher & phase roation

