PSI experience with High Power Target Design and operational considerations for muon production

[with slides from Th.Prokscha, G.Heidenreich]

Mike Seidel Paul Scherrer Institut April 19, 2013, Brookhaven National Laboratory

Outline

- overview PSI targets and parameters
- thermomechanical target aspects, mechanics and supporting infrastructure
- example for μ -beam capture and transport
- discussion

PSI proton accelerator complex

Meson production targets used at PSI

		Target M	<u>Target E</u>
1974-80	< 100 μA	Be, Graphite *) ∅ 190 mm 0.9 g/cm²	Be, Graphite *) ∅ 190 mm 22 g/cm ²
			Pyrolitic graphite**) 22 g/cm ²
1980-89	250 μA	Graphite *) ∅ 320 mm 0.9 g/cm ²	Graphite *) ∅ 280 mm 18 g/cm²
since 1990	0.5 - 2 mA	Graphite *) Graphi ∅ 320 mm 0.9 g/cm ²	ite *) Ø 450 mm 10 g/cm ² (60 mm) or 7 g/cm ² (40 mm)
		*) rotating wheel target	<pre>**) static target</pre>

Target-M design

Target M:

3

Beam loss:	1.6 %
Power deposition:	2.4 kW/mA
Operating Temperate	ure: 1100 K
Irradiation damage r	ate:0.12 dpa/Ah
Rotational Speed:	1 Turn/s

Exchange of Target-M

Operation of the remotely controlled shielded flask

Dose rate ~10 mSv/h

Design of the proton channel between target-E and the beam dump

Working platform / Operation of the remotely controlled shielded flask

Design of Target station E

Target-E design

450 mm

1 Turn/s

Drive motor & permanent-magnet clutch

design of graphite wheel

Temperature & stress distribution (2mA, 40 kW)

Maintenance of the target-insert in the hot-cell

Exchange parts:

Operational limits of the rotating graphite & beryllium cones for target-E

Lifetime of the pyrolitic graphite targets due to irradiation-induced dimensional changes

12

Muon- capture: Layout of the μE4 high-intensity μ beam [Th:Prokscha]

Transport and TRACK calculations

Solenoid versus quadrupole

First order transfer matrix for static magnetic system with midplane symmetry:

	(R_{11})	R_{12}	0	0		R_{16}
	R_{21}	R_{22}	0	0		R_{26}
$\mathbf{R} =$	0	0	R_{33}	R_{34}		
	0	0	R_{43}	R_{44}		
		:	:	:	۰.,	
	· ·					

$$\begin{aligned} x_1 &= R_{11}x_0 + R_{12}x'_0 + R_{16}\frac{\Delta p}{p} \\ x'_1 &= R_{21}x_0 + R_{22}x'_0 + R_{26}\frac{\Delta p}{p} \\ &\vdots \end{aligned}$$

First order transfer matrix for a solenoid, mixing of horizontal and vertical phase space:

	$\binom{R}{R}$	$R_{11} R_1$	$_{2}$ R_{13}	$_{3}$ R_{14}		R_{16}	
	R	$R_{21} R_2$	$R_{23} R_{23}$	R_{24}		R_{26}	
$\mathbf{R} =$	R	R_{31} R_3	R_{33}	R_{34}			ł
	R	R_{41} R_4	$_{2}$ R_{43}	R_{44}			
	(:	: :	:	:	:	:	
				•	•	•	/

$$\begin{aligned} x_1 &= R_{11}x_0 + R_{12}x_0' + R_{13}y_0 + R_{14}y_0' + R_{16}\frac{\Delta p}{p} \\ x_1' &= R_{21}x_0 + R_{22}x_0' + R_{23}y_0 + R_{24}y_0' + R_{26}\frac{\Delta p}{p} \end{aligned}$$

Mixing of phase space might lead to an increase of beam spot size

Rotation Θ of phase space: $\Theta = \frac{B \cdot l_{eff}}{2(B\rho)}$ $\tan(\Theta) = -\frac{R_{31}}{R_{11}} = \frac{R_{13}}{R_{33}}$ $\Theta = 90^{\circ}$: x-y PS exchanged

$$\mathbf{R} = \begin{pmatrix} 0 & 0 & R_{13} & R_{14} & \dots & R_{16} \\ 0 & 0 & R_{23} & R_{24} & \dots & R_{26} \\ R_{31} & R_{32} & 0 & 0 & \dots & \dots \\ R_{41} & R_{42} & 0 & 0 & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \end{pmatrix}$$

Azimuthal symmetry of solenoids leads to larger acceptance

Focusing powers P_{S,T} of solenoid and triplet at same power dissipation in device:

$$\begin{split} 1/f &= P \\ P_T &= P_S \cdot \left[l_{eff}^2 / (2a^2) \right] \\ P_T &> P_S \quad \text{if} \quad l_{eff} > \sqrt{2}a \end{split}$$

Double-solenoid WSX61/62

Installation of a section of μ E4 in 2004

Discussion

- PSI concept is optimized for dual use of beam (Meson and Neutron Production); C = low-z material; strong focus at target: minimize emittance growth
- beam loss at 40mm C-target: 10% inelastic nuclear interactions; 20% collimation of spent beam
- rotating graphite target concept with radiation cooling was optimized over many years; lifetime limited by anisotropy of graphite and resulting wobbling from radiation damage; pyrolithic graphite not suited!
- service and exchange systems, Hotcell are VERY IMPORTANT for practical operation
- Muon figures: ≈5·10⁸ μ⁺/s possible @p=28MeV/c; Δp/p=9.5%_{FWHM}; ε_{x/y} = 5/10·10⁻³m·rad
 T. Prokscha, et al., Nucl. Instr. and Meth. A (2008), doi:10.1016 /j.nima.2008.07.081
- activation after one year: order of 1...5 Sv/h; thanks to Graphite this is low compared to heavy target materials!
- issues: Tritium production in porous material; oxidation of graphite with poor vacuum of 10⁻⁴mbar; carbon sublimation at higher temperatures; wobbling of wheel caused by inhomogeneous radiation damage