

## Energy deposition for intense muon sources (chicane + the rest of the front end)

#### Pavel Snopok Illinois Institute of Technology and Fermilab December 4, 2014

# Outline

Accelerato Accelerato

- Introduction
- History
- Current MARS simulations
  new data files for solid target
- Using other codes (ICOOL and G4beamline)
- Summary

## Introduction





- In high-intensity sources muons are produced by firing high energy *p* onto a target to produce *π*.
- $\pi$  decay to  $\mu$  which are captured and accelerated.
- Significant background from p and  $\bar{e}$ , which may result in
  - heat deposition on superconducting materials;
  - activation of the machine preventing manual handling.

## Introduction, contd.





- Need a secondary particle handling system for a megawatt class solid C target
  - solenoidal chicane
  - followed by a proton absorber.
- Challenges of optimization and integration of the system with the rest of the muon front end.
- Main study tool MARS, some analysis and validation by using ICOOL and G4beamline.
- Start with the chicane, use the same technique downstream to study the the buncher and phase-rotator sections.

# History: MARS simulations 0 100 200 0 450 900 V v:z = 1:3.500e+00

- ROOT-based geometry
- 12.5° single bend, Z=0 corresponds to 19 m downstream of the target

```
- consistent with RDR (IDS-NF).
```

W density reduced to 60% to take into account packing fraction for beads.

### Reference: no shielding





DPD peaks at 15.8 mW/g, that translates into 42.6 kW/m for Cu coils or 33.3 kW/m

for SC coils.

### Uniform 35 cm shielding



 $V_{v} = 1:3.500e+00$ 

#### **Empty channel**

#### PD total, mW/g

## Non-uniform 30 and 40 cm shielding



v v z = 1:3.500e+00

y y:z = 1:3.500e+00

#### Empty channel

#### PD total, mW/g



# Overall DPD per coil/segment





Segmented coil analysis, total DPD, mW/g

Average DPD per coil, mW/g

In both cases red line corresponds to 0.1 mW/g SC limit

## **Current MARS simulations**

- New target parameters:
  - -8 GeV => 6.75 GeV
  - -4 MW => 1 MW
  - 3.125e15 protons/sec => 0.925e15 protons/sec
  - new particle distribution
  - need to re-run MARS
- The hope is that the new parameters help reduce the amount of shielding required





Muon flux, top view

Muon flux, side view





Proton flux, top view

Proton flux, side view

C





Deposited power density, mW/g, top view Deposited power density, mW/g, side view

cm

 $10^{-14}$ 





Deposited power density, mW/g segmented coil analysis



## Deposited power density, mW/g averaged

### Other codes



- Can G4beamline or ICOOL be used for energy loss/deposition calculations?
- Back in 2010 I did a comparison of the two codes for IDR:



# Summary



- Simulations of the new 1 MW graphite target are underway, first results presented.
  - power density > 0.1 mW/g only in a handful of cental coils, very low everywhere else;
  - definitely do not need 35 cm of tungsten.
- Action item: implement a more sophisticated geometry (elliptical cross-section following the profile of the beam).
  - this will allow to significantly reduce the amount of W used for shielding.
- MARS is the main tool, although G4beamline and ICOOL can also be used for some analyses.



## Thank you!