SHIELDING STUDIES FOR THE MUON COLLIDER TARGET

NICHOLAS SOUCHLAS BNL Nov 30, 2010

1

MUON COLLIDER TARGET STATION

COMPONENTS

- 1. PROJECTILES (PROTON BEAM).
- 2. TARGET (MERCURY JET).
- 3. SUPERCONDUCTING COILS (SC) FOR UP TO 14 T MAGNETIC FIELD AROUND INTERACTION AREA (NbSn, NbTi).
- 4. RESISTIVE COILS FOR ADDITIONAL 6 T MAGNETIC FIELD SO THAT B~20 T AROUND THE INTERACTION AREA.
- 5. BEAM PIPE(STST Stainless Steel).
- 6. CRYOGENIC COOLING FOR THE SC SOLENOIDS.
- 7. MERCURY COLLECTING TANK AND REMOVAL SYSTEM.
- 8. SHIELDING CONFIGURATIONS (WC BEADS+H₂O).

REQUIREMENTS/LIMITATIONS

PROTON BEAM AND MERCURY JET PARAMETERS ARE OPTIMIZED TO PRODUCE THE MAXIMUM NUMBER OF MUONS. LIMITATIONS :MAGNETIC FIELD VALUES AND VARIATION DETERMINES IN PART THE SUPERCONDUCTING COILS CONFIGURATION (GEOMETRY), AND DIMENSIONS.

:CRYOGENIC COOLING EXPENSIVE, SO AS LITTLE ENERGY AS POSSIBLE SHOULD BE DEPOSITED IN THE SOLENOIDS.

:AVOID QUENCHING, PEAK VALUES OF DEPOSITED ENERGY BELOW A LIMIT.

:AVOID SOLENOIDS MATERIAL LATTICE/STRUCTURAL DAMAGE FROM IRRADIATION PARTICLES.

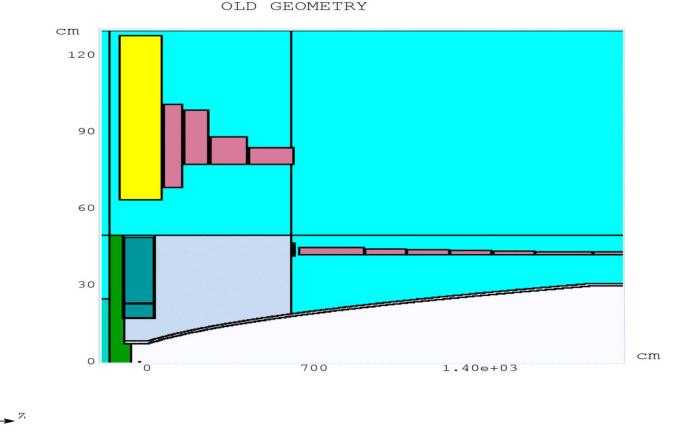
:SOLENOIDS STRESS FORCES ALSO BELOW A LIMIT, LIMITS ON SIZE/DIMENSIONS OF SOLENOIDS.

:SPACE FOR SHIELDING MATERIAL IS LIMITED.

CHOOSE A CONFIGURATION/GEOMETRY THAT HAS THE RIGHT BALANCE BETWEEN AVAILABLE SPACE FOR SHIELDING AND VIABLE SOLENOIDS SIZE. RESULTS OF DEPOSITED ENERGY AND PEAK VALUES FOR THREE DIFFERENT GEOMETRIES WILL BE PRESENTED. **Energy deposition from MARS, MARS+MCNP codes.**

STANDARD (STUDY II) GEOMETRY.

STANDARD SHIELDING ($80\%WC+20\%H_2O$).


4MW proton beam.

Initially E=24 GeV, GAUSSIAN PROFILE: $\sigma_x = \sigma_y = 0.15$ cm.

Now E=8 GeV,

GAUSSIAN PROFILE: $\sigma_x = \sigma_y = 0.12 \text{ cm.}$

STANDARD (STUDY II) SOLENOID GEOMETRY, 13 SC

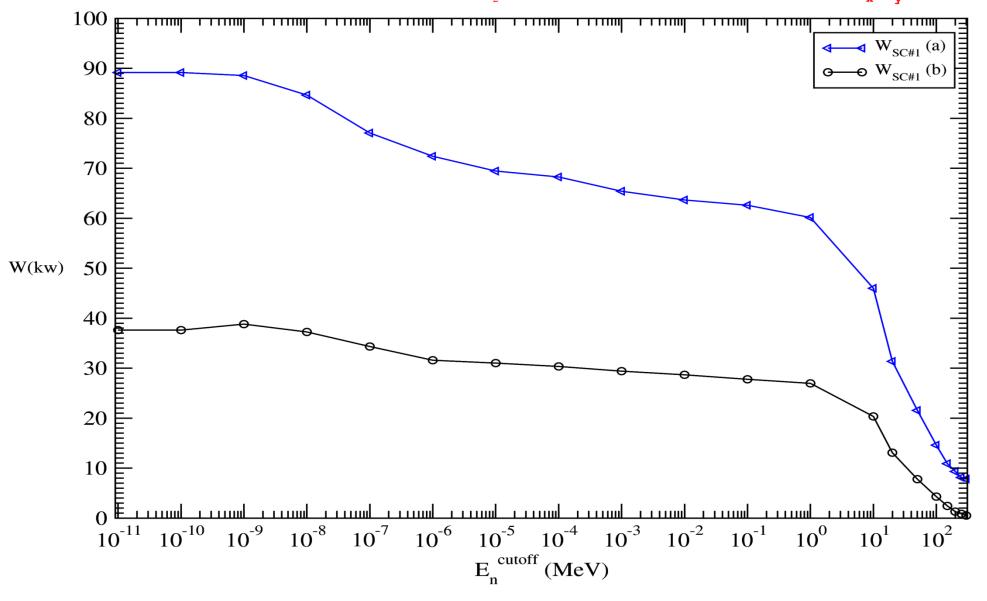
Aspect Ratio: X:Z = 1:16.9230

SC#1-120 < z < 57.8 cm $R_{in} = 63.3 \text{ cm}$ $R_{out} = 127.8 \text{ cm}$ SC#267.8 < z < 140.7 cm $R_{in} = 68.6 \text{ cm}$ $R_{out} = 101.1 \text{ cm}$ SC#6-13632.5 < z < 218.7 cm $R_{in} = 42.2 \text{ cm}$ $R_{out} = 45.1 - > 43.4 \text{ cm}$ (TOTAL # SC=13)

DEPOSITED ENERGY WITH 24 GeV AND 8 GeV BEAM (MARS, MARS+MCNP).

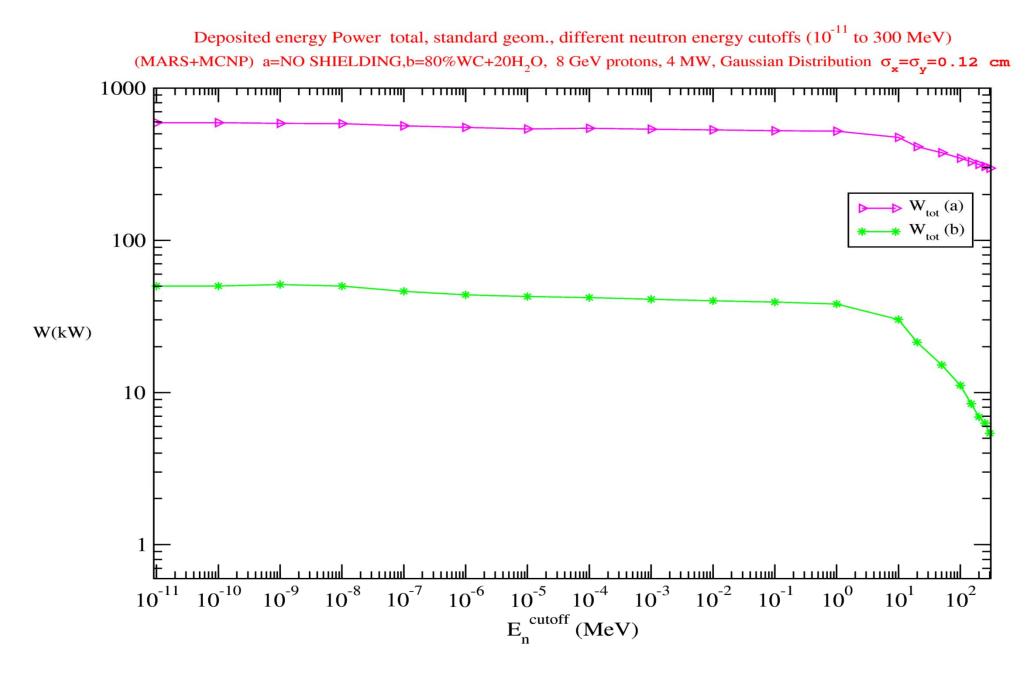
Table 0.1:

N _p =100,000, STANDARD GEOMETRY,13 SC COILS
SOLENOID MATERIALS: SC#1-13=SCON (NiTi+Cu+)
$E_p=24$ GeV, 4 MW BEAM, Gaussian Distr., $\sigma_x=\sigma_y=0.15$ cm
a= MARS $E_n \ge 0.1$ MeV (DEFAULT)
b= MARS+MCNP $E_n \ge 10^{-11} \text{ MeV}$
$E_p=8$ GeV, 4 MW BEAM, Gaussian Distr., $\sigma_x=\sigma_y=0.12$ cm
$c = MARS E_n \ge 0.1 MeV (DEFAULT)$
d= MARS+MCNP $E_n \ge 10^{-11}$ MeV

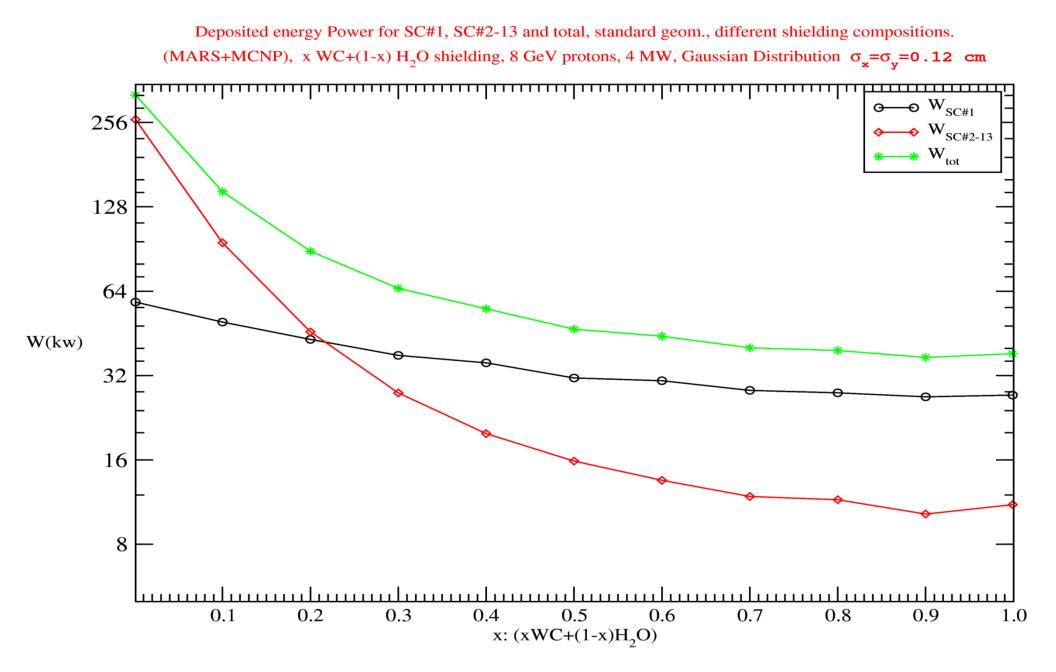

Table 0.2: POWER OF DEPOSITED ENERGY IN kW, DW/W $\% = ((W_x - W_a)/W_a)$ x100 where x=b,c,d.

		SC#1	%	SC#2-13	%	Total	%
24 GeV	8.	14.28	-	14.90	-	29.18	-
21000	b	22.06	+54.48	16.30	+9.40	38.36	+31.50
8 GeV	с	24.97	+74.86	11.84	-20.54	36.81	+26.15
	d	37.62	+163.45	12.46	-16.38	50.08	+71.62

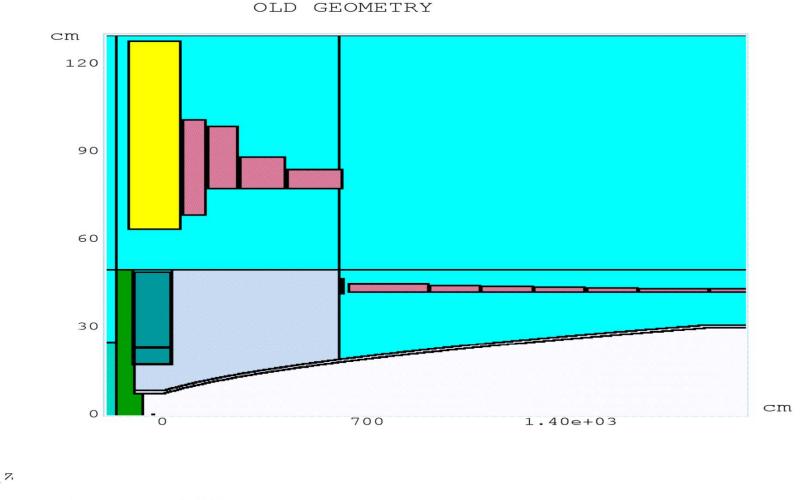
From 24 GeV to 8 GeV, and from a more detail treatment of low energy neutrons: from ~14 kW to ~38 kW power in SC1 and from ~29 kW to 50 kW in total power.


OFF/ON SHIELDING, DIFFERENT NEUTRON ENERGY CUTOFFS.

Deposited energy Power for SC#1, standard geom., different neutron energy cutoffs (10^{-11} to 300 MeV) (MARS+MCNP) a=NO SHIELDING,b=80%WC+20H₂O, 8 GeV protons, 4 MW, Gaussian Distribution $\sigma_y = \sigma_y = 0.12$ cm



SAME RESULTS FOR SC#2-13


OFF/ON SHIELDING, DIFFERENT NEUTRON ENERGY CUTOFFS.

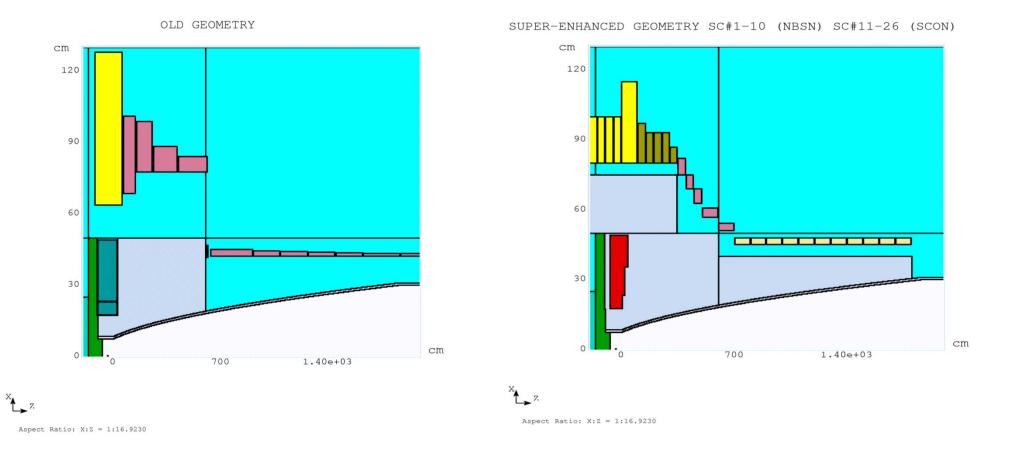
High energy neutrons are a problem even with shielding material.

Within shielding thickness restrictions, best effect is achieved by maximizing content in high Z material. For WC beads and H_2O , from random sphere packing analysis x~0.63.

Aspect Ratio: X:Z = 1:16.9230

REPLACING RESISTIVE MAGNET WITH SHIELDING MATERIAL (80%WC+20% H₂O) REDUCES DEPOSITED ENERGY IN SC#1 FROM ~38 kW TO ~13 kW (A FACTOR OF ~3). (MARS+MCNP WITH NEUTRON ENERGY CUTOFF OF 10⁻¹¹ MeV) **Energy deposition from MARS+MCNP codes.**

IDS80 GEOMETRY WITH IRON PLUG (TO PROVIDE MORE SPACE FOR SHIELDING ESPECIALLY FOR SOLENOIDS AROUND THE INTERACTION AREA).


SHIELDING (60%WC+40% H_2O).

4MW proton beam.

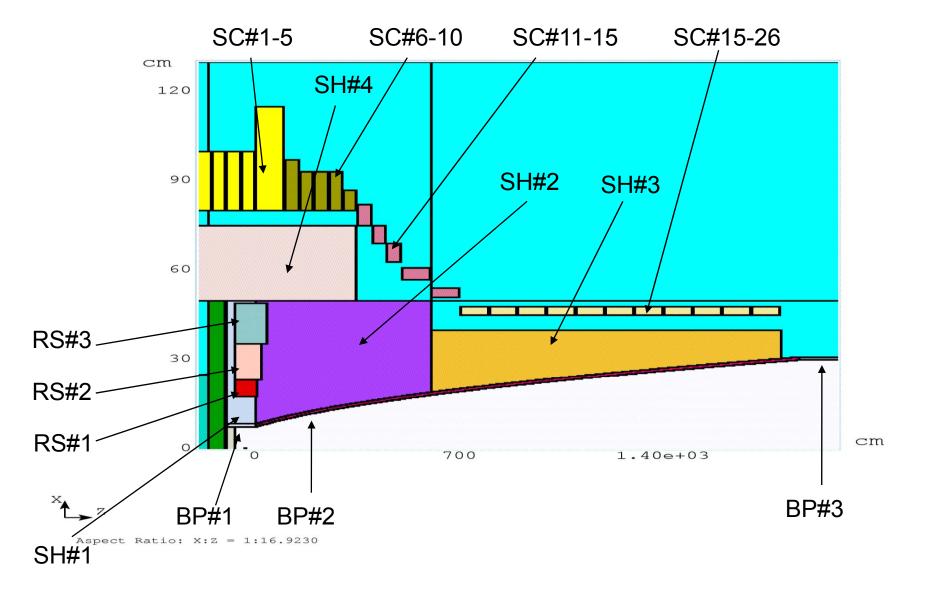
PROTONS ENERGY E=8 GeV.

GAUSSIAN PROFILE: $\sigma_x = \sigma_y = 0.12 \text{ cm}.$

STANDARD (OLD) VS. IDS80 (NEW) SOLENOID GEOMETRY (IDS80 WITH 60%WC+40% H2O SHIELDING)

NEW: SC#1-10 -200<z<345 cm R_{in} =80.0 cm R_{out} =100 (1-4)/115 (5)/97 (6)/93(7-9)/87(10)cm SC#11-15 350<z<695 cm R_{in} =75.0-->51 cm R_{out} =82.0-->54 cm SC#16-26 700<z<1795 cm R_{in} =45 cm R_{out} =48 cm (TOTAL # SC=26)

From 63.3 cm (SC#1) to 80 cm (SC#1-10) inner radius for solenoids around target area: more space for shielding.


MARS+MCNP(NEUTRON ENERGY CUTOFF 10⁻¹¹ MeV)

- Study II geometry with 80%WC+20% H₂O shielding---->
- Enhanced shielding case (IDS80), with 60%WC+40% H₂O shielding:

SC#1: 37.6 kW ----->SC#1-5: 2.4 kW

SC#1-13: 50.0 kW----->SC#1-26: 3.4 kW

DETAIL STUDY OF IDS80 WITH IRON PLUG (MARS+MCNP, 10⁻¹¹ MeV NEUTRON ENERGY)

ENERGY DEPOSITED IN SC SOLENOIDS (SC#), SHIELDING (SH#).

NiSn/NiTi	P(kW)	60/40	P(kW)
SC#1-5	2.42	SH#1	967.5
SC#6-10	0.57	SH#2	1107.5
SC#11-15	0.16	SH#3	36.04
SC#16-26	0.31	SH#4	31.83
SC#1-26	3.64	SH#1-4	2142.87

ENERGY DEPOSITED IN RESISTIVE COILS (RS#), BEAM PIPE (BP#), IRON PLUG (IP#).

(Cu)	P(kW)	(STST)	P(kW)	(FeCo)	P(kW)
RS#1	68.25	BP#1	207.50	IP#1	0.24
RS#2	66.05	BP#2	238.40	IP#2	0.11
RS#3	36.50	BP#3	8.02	IP#3	11.35
RS#1-3	170.80	BP#1-3	453.92	IP#1-3	11.70

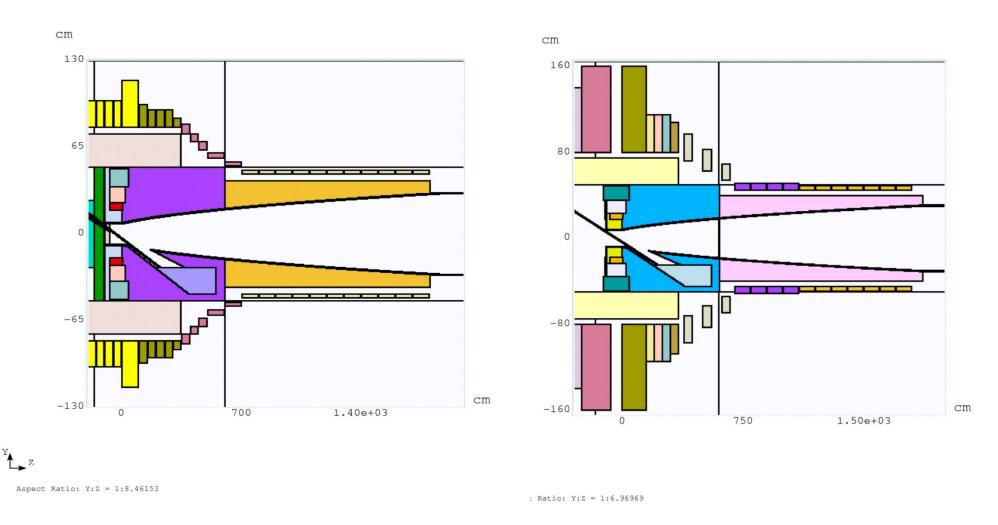
ENERGY DEPOSITED IN OTHER PARTS AND TOTALS.

TOTALS	P(kW)
SC#1-26	3.64
SH#1-4	2142.87
RS#1-3	170.80
BP#1-3	453.92
IP#1-3	11.70
Hg TARG.	379.90
Hg POOL	9.32
Be WIND.	0.62
TOTAL	3172.77

ABOUT 80% OF THE 4 MW IS ACCOUNDED FOR .

Energy deposition from MARS+MCNP codes (10⁻¹¹ MeV NEUTRON ENERGY CUTOFF).

IDS80 GEOMETRY WITHOUT IRON PLUG AND YOKE MATERIAL (TO ACCOMODATE ACCESS TO DIFFERENT PARTS OF THE TARGET STATION).


SHIELDING (60%WC+40% H₂O).

4MW proton beam.

PROTONS ENERGY E=8 GeV.

GAUSSIAN PROFILE: $\sigma_x = \sigma_y = 0.12 \text{ cm}$.

IDS80 GEOMETRY WITH AND WITHOUT IRON PLUG AND YOKE.

NEW: SC#1-7 -300<z<345 cm R_{in} =80.0 cm R_{out} =140 (1)/160 (2,3)/115 (5-6)/108(7) cm(NbSn) SC#8-10 383<z<667 cm R_{in} =72/63/54 cm R_{out} =97.0/83/69 cm (NbTi) SC#11-14 700<z<1090 cm R_{in} =45 cm R_{out} =51 cm (NbTi) SC#15-21 7190<z<1090 cm R_{in} =45 cm R_{out} =49 cm (NbTi) (TOTAL # SC=21)

ENERGY DEPOSITED IN SC SOLENOIDS (SC#), SHIELDING (SH#).

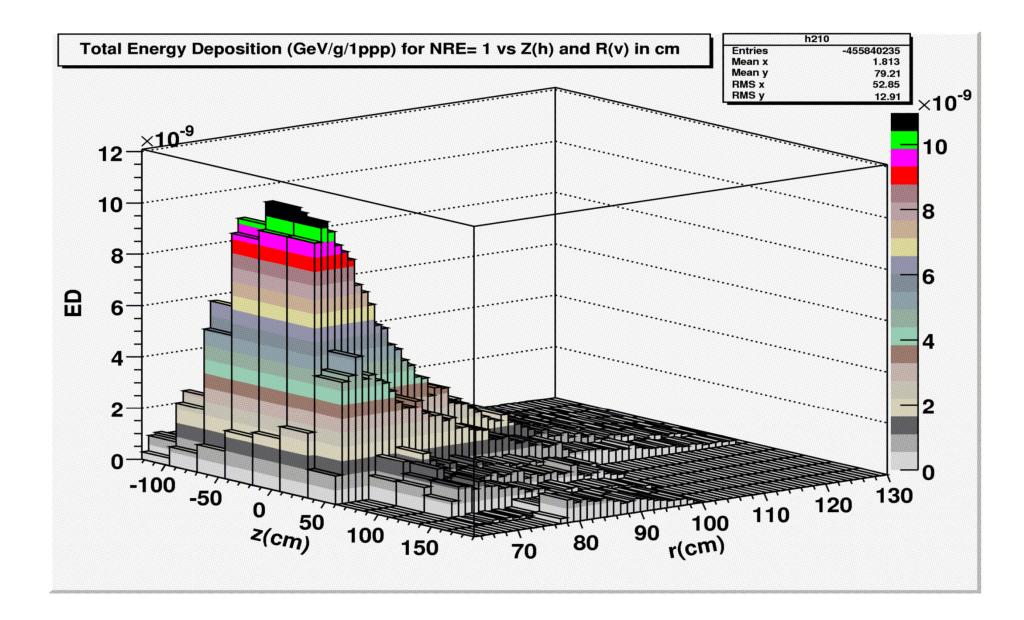
NiSn/NiTi	P(kW)
SC#1	7.48 10 ⁻⁴
SC#2	0.37
SC#3	2.38
SC#4	0.27
SC#5	0.20
SC#6	0.09
SC#7	0.06
SC#1-7	3.37
SC#8-10	0.27
SC#11-14	0.29
SC#15-21	0.18
SC#1-21	4.11

NiSn/NiTi	P(kW)	60/40	P(kW)
SC#1-7	3.37	SH#1	956.0
SC#8-10	0.27	SH#2	1145.0
SC#11-14	0.29	SH#3	37.15
SC#15-21	0.18	SH#4	33.17
SC#1-21	4.11	SH#1-4	2171.32

ENERGY DEPOSITED IN RESISITVE SOLENOIDS (RS#), BEAM PIPE(BP#).

(Cu)	P(kW)	(STST)	P(kW)
RS#1	64.30	BP#1	204.20
RS#2	68.65	BP#2	253.05
RS#3	37.82	BP#3	5.51
RS#1-3	170.77	BP#1-3	462.76

ENERGY DEPOSITED IN OTHER PARTS AND TOTALS:

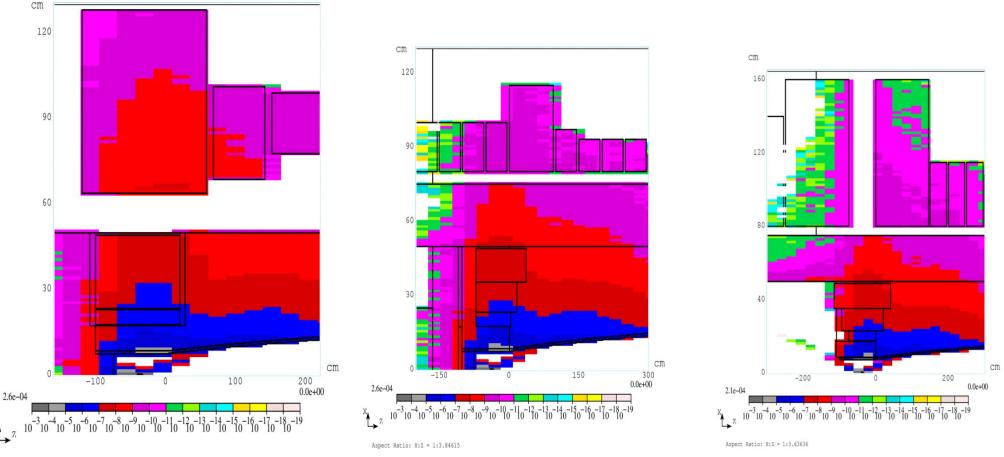

WITH IRON PLUG

TOTALS	P(kW)
SC#1-26	3.64
SH#1-4	2142.87
RS#1-3	170.80
BP#1-3	453.92
IP#1-3	11.70
Hg TARG.	379.90
Hg POOL	9.32
Be WIND.	0.62
TOTAL	3172.77

WITHOUT IRON PLUG/YOKE

TOTALS	P(kW)
SC#1-21	4.11
SH#1-4	2171.32
RS#1-3	170.77
BP#1-3	462.76
Hg TARG.	374.90
Hg POOL	9.73
Be WIND.	0.53
TOTAL	3194.11

SHIELDING MATERIAL, RESISITVE COILS, BEAM PIPE, Be WINDOW, MERCURY TARGET AND POOL: ABOUT SAME ENERGY FOR BOTH CASES.

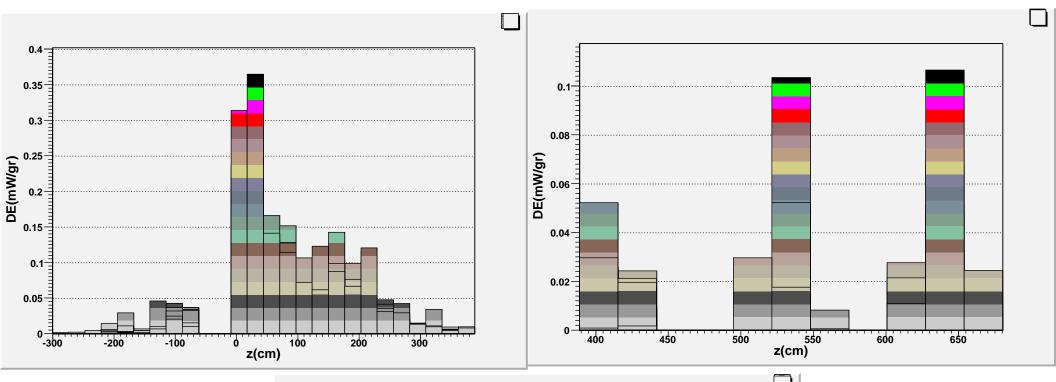


STUDY II GEOMETRY 3D ROOT PLOT OF DEPOSITED ENERGY FOR FIRST TWO SUPER-CONDUCTING SOLENOID:5.5 mW/gr ~(64.5<r<67.0 cm, -20.0<z<32.0 cm)

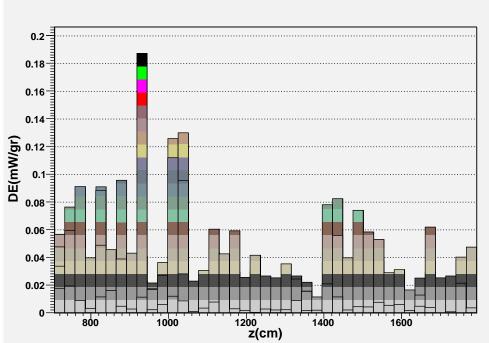
STUDY II

IDS80 IRON PLUG

IDS80 NO IRON PLUG


Aspect Ratio: X:Z = 1:2.92307

STUDY II PEAK VALUE: ~(5.5 mW/gr in -20.0<z<32.0 cm, 64.5<z<67 cm) SC#1

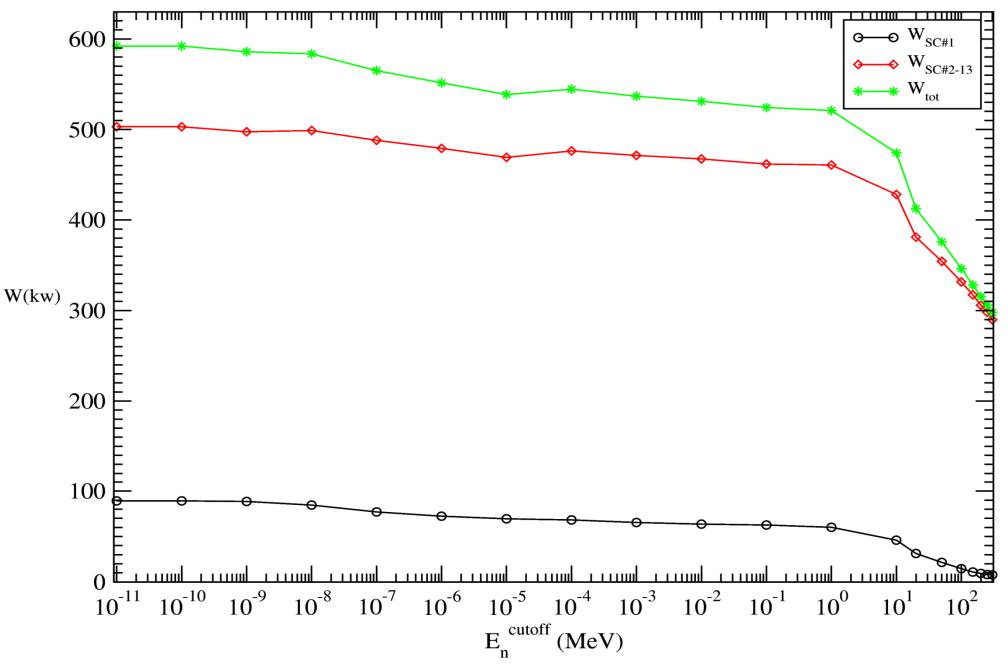

IDS80 PEAK VALUE: ~(0.36 mW/gr in -42.0<z<9 cm, 80<r<81.2 cm, 82.2<r<84.5 cm) SC#4

IDS80 NO IRON PLUG PEAK VALUE: ~(0.36 mW/gr -19.0<z<44.0 cm, 80.5<r<81.0 cm) SC#3

IDS80d, no iron plug

Hot spot at $z \sim 900$ cm may be due to low level of mercury in the pool.

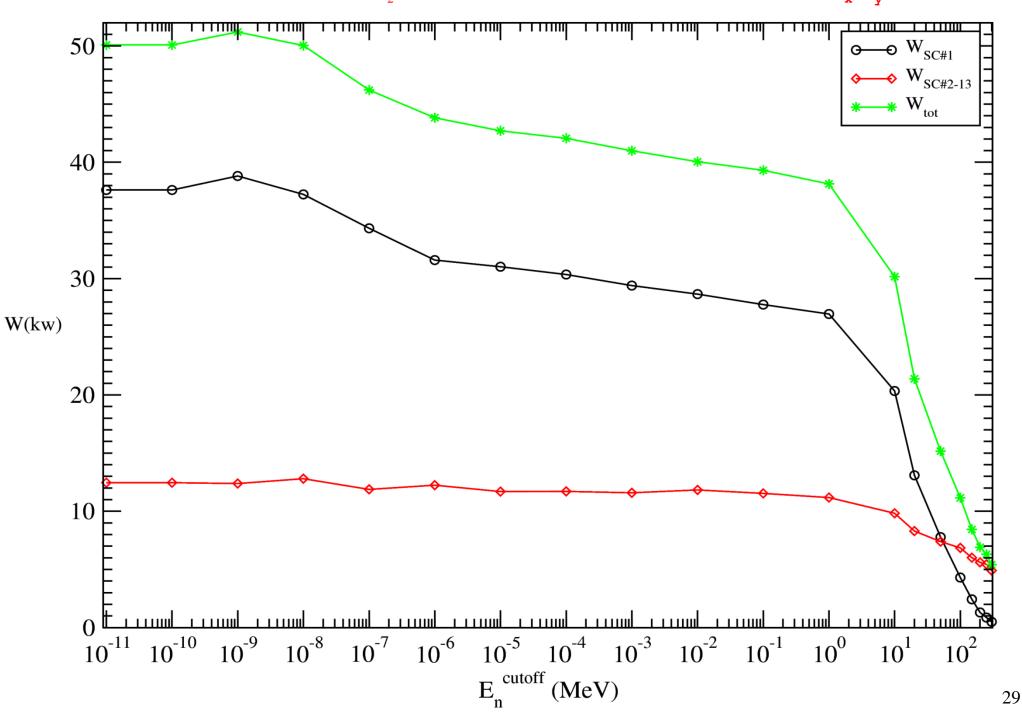
CONCLUSIONS.

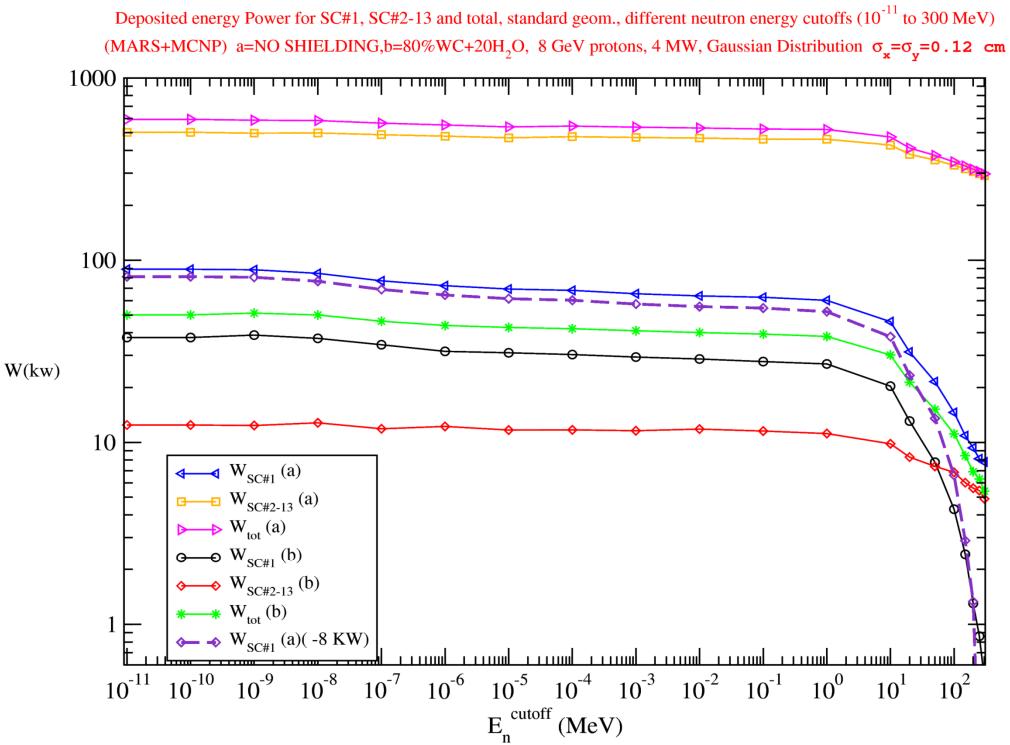

- •Low energy neutrons require detail study provided by MCNP.
- •High energy neutrons are a problem even with the shielding material.
- •Resistive coil significantly reduces the ability for shielding SC1/first group of SC solenoids around interaction region.
- •High Z material is required and as much as possible.
- •Additional space for shielding material necessary for solenoids especially around the interaction area (IDS80 GEOMETRY WITH IRON PLUG).
- •Additional space to accommodate access to different parts of the target station needed (IDS80 GEOMETRY WITHOUT IRON PLUG/YOKE).
- •STUDY II geometry~ 50 kW in SC solenoids, 5.5 mW/gr peak values.
- •IDS80 geometries~ 3-4 kW in SC solenoids, 0.35 mW/gr peak values.

BACKUP SLIDES

NO SHIELDING, DIFFERENT NEUTRON ENERGY CUTOFFS.

	$E_n \geq E_i(\text{MeV})$	SC#1	%	SC#2-13	%	Total	%
1	1 10 ⁻¹¹	89.15	-	503.00	-	592.15	-
2	1 10 ⁻¹⁰	89.15	0	503.00	0	592.15	0
3	1 10 ⁻⁹	88.55	-0.67	497.40	-1.11	585.90	-1.06
4	1 10 ⁻⁸	84.64	-5.06	498.90	-0.82	583.55	-1.45
5	1 10 ⁻⁷	77.05	-13.57	488.00	-2.98	565.05	-4.58
6	1 10 ⁻⁶	72.40	-18.79	479.15	-4.74	551.55	-6.85
7	1 10 ⁻⁵	69.45	-22.10	469.15	-6.73	538.60	-9.04
8	1 10 ⁻⁴	68.25	-23.44	476.25	-5.32	544.50	-8.05
9	$1 \ 10^{-3}$	65.40	-26.64	471.35	-6.29	536.75	-9.36
10	1 10 ⁻²	63.65	-28.60	467.50	-7.06	531.15	-10.30
11*	1 10 ⁻¹	62.60	-29.78	461.75	-8.20	524.35	-11.45
12	1 100	60.15	-32.53	460.80	-8.39	520.95	-12.02
13	1 10 ⁺¹	45.98	-48.42	428.25	-14.86	474.23	-19.91
14*	2 10 ⁺¹	31.35	-64.83	381.10	-24.23	412.45	-30.35
15	5 10 ⁺¹	21.54	-75.84	354.30	-29.56	375.84	-36.53
16	10 10 ⁺¹	14.60	-83.62	331.60	-34.08	346.20	-41.54
17	15 10+1	10.89	-87.78	317.30	-36.92	328.19	-44.58
18	20 10 ⁺¹	9.33	-89.53	305.90	-39.18	315.23	-46.77
19	25 10 ⁺¹	8.13	-90.88	298.00	-40.76	306.13	-48.30
20	30 10 ⁺¹	7.81	-91.24	289.80	-42.39	297.61	-49.74


Deposited energy Power for SC#1, SC#2-13 and total, standard geom., different neutron energy cutoffs (10^{-11} to 300 MeV) (MARS+MCNP) NO SHIELDING, 8 GeV protons, 4 MW, Gaussian Distribution $\sigma_x = \sigma_y = 0.12$ cm


80%WC+20%H₂O SHIELDING, DIFFERENT NEUTRON ENERGY CUTOFFS.

	$E_n \ge E_i (MeV)$	SC#1	%	SC#2-13	%	Total	%
1	1 10 ⁻¹¹	37.62	-	12.46	-	50.08	-
2	1 10 ⁻¹⁰	37.62	0	12.46	0	50.08	0
3	1 10 ⁻⁹	38.82	+3.19	12.38	-0.64	51.20	+2.23
4	1 10 ⁻⁸	37.24	-1.01	12.80	+2.73	50.04	-0.08
5	1 10-7	34.33	-8.75	11.88	-4.65	46.21	-7.72
6	1 10 ⁻⁶	31.59	-16.03	12.24	-1.77	43.83	-12.48
7	1 10 ⁻⁵	31.02	-17.54	11.69	-6.17	42.71	-14.71
8	1 10 ⁻⁴	30.35	-19.32	11.71	-6.02	42.06	-16.01
9	1 10 ⁻³	29.40	-21.85	11.59	-6.98	40.99	-18.15
10	1 10 ⁻²	28.67	-23.79	11.83	-5.06	40.05	-20.03
11*	1 10 ⁻¹	27.77	-26.18	11.54	-7.38	39.31	-21.51
12	1 100	26.96	-28.34	11.18	-10.27	38.14	-23.84
13	1 10 ⁺¹	20.34	-45.93	9.83	-21.11	30.17	-39.76
14*	2 10 ⁺¹	13.09	-65.20	8.30	-33.39	21.39	-57.29
15	5 10 ⁺¹	7.78	-79.31	7.39	-40.69	15.17	-69.71
16	10 10 ⁺¹	4.30	-88.57	6.85	-45.02	11.15	-77.74
17	15 10 ⁺¹	2.43	-93.54	6.01	-51.77	8.44	-83.15
18	20 10 ⁺¹	1.30	-96.54	5.61	-54.98	6.91	-86.20
19	25 10 ⁺¹	0.86	-97.71	5.44	-46.34	6.30	-87.42
20	30 10 ⁺¹	0.50	-98.67	4.90	-60.67	5.40	-89.22

Deposited energy Power for SC#1, SC#2-13 and total, standard geom., different neutron energy cutoffs (10^{-11} to 300 MeV) (MARS+MCNP) 80% WC+20% H₂O shielding, 8 GeV protons, 4 MW, Gaussian Distribution $\sigma_x = \sigma_y = 0.12$ cm

Deposited energy Power for SC#1, SC#2-13 and total, standard geom., different neutron energy cutoffs (10⁻¹¹ to 300 MeV) (MARS+MCNP) a=NO SHIELDING,b=80%WC+20H₂O, 8 GeV protons, 4 MW, Gaussian Distribution $\sigma_x = \sigma_y = 0.12$ cm 100 W(kw) 10 $\triangleleft W_{SC\#1}(a)$ $\mathbf{W}_{SC\#2-13}(a)$ $> W_{tot}(a)$ ө $W_{SC\#1}(b)$ $\diamond W_{SC\#2-13}(b)$ $* W_{tot}(b)$ 10^{-10} 10^{-6} 10^{-8} 10^{-7} 10^{-9} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{2} 10^{-11} 10^{1} E_n^{cutoff} (MeV)

ENERGY DEPOSITED FOR DIFFERENT COMPOSITIONS OF THE SHIELDING ($x WC+(1-x) H_2O$)

	SHIELDING	$\rho(g/cc)$	G1	%	G2	%	Total	%
1	0.1% WC+99.9% H_2 O	1.0148	58.50	-	262.30	-	320.80	- 1
2	$10\% \text{ WC} + 90\% H_2\text{O}$	2.48	49.67		95.20		144.87	
3	20% WC+ 80% H_2 O	3.96	43.06		45.84		88.90	
4	30% WC+70% H_2 O	5.44	37.78		27.75		65.53	
5	40% WC+ 60% H_2 O	6.92	35.53		19.87		55.40	
6	50% WC+ 50% H_2 O	8.4	31.38		15.85		46.85	
7	60% WC+ 40% H_2 O	9.88	30.67		13.54		44.21	
8	70% WC+30% H ₂ O	11.36	28.34		11.85		40.19	
9	80% WC+ 20% H_2 O	12.84	27.77		11.54		39.31	
10	90% WC+10% H_2 O	14.32	26.88		10.26		37.14	
11	99.9% WC+ $0.1\% H_2O$	15.79	27.25		11.08		38.33	
1C	0.1% WC+99.9% H ₂ O	1.0148	31.90	-	221.70	-	253.60	-
2C	$10\% \text{ WC} + 90\% H_2\text{O}$	2.48	25.35		71.10		96.45	
3C	20% WC+ 80% H_2 O	3.96	21.48		31.46		52.94	
4C	30% WC+70% H_2 O	5.44	18.77		18.80		37.57	
5C	40% WC+ 60% H_2 O	6.92	17.02		13.79		30.80	
6C	50% WC+ 50% H_2 O	8.4	15.21		10.62		25.83	
7C	60% WC+ 40% H_2 O	9.88	14.10		9.58		23.68	
8C	70% WC+30% H ₂ O	11.36	13.26		8.98		22.24	
9C	80% WC+ 20% H_2 O	12.84	13.09		8.30		21.39	
10C	90% WC+10% H ₂ O	14.32	12.45		8.14		20.58	
11C	99.9% WC+0.1% H ₂ O	15.79	11.95		7.94		19.89	

DEPOSITED ENERGY BY REMOVING THE MAGNETIC FIELD, USING TWO WAYS: (4=F, B≠0) (4=T, B=0)

Table 0.4: (10/23/2010)

YES/NO MAGNETIC FIELD (SET 4=F OR B=(0,0)) (****)
N _p =100,000, STANDARD GEOMETRY,13 SC COILS, 2 SC groups:G1=1, G2=2-13
STANDARD SHIELDING WITH: 80% WC+20% H ₂ O, MARS+MCNP
SOLENOID MATERIALS: SC#1-13=SCON (NiTi+Cu+)
$E_p=8 \text{ GeV}, 4 \text{ MW BEAM}, \sigma_x=\sigma_y=0.12 \text{ cm Gaussian distr.}$
$a = E_n \ge 0.1 \text{ MeV} (\text{DEFAULT})$
$b = E_n \ge 20 \text{ MeV}$
c=B FIELD OFF(SET PARAM. 4=F IN THE .INP FILE), $E_n ≥ 0.1$ MeV (DEFAULT)
d=B FIELD OFF(SET PARAM. 4=F IN THE .INP FILE), $E_n \ge 20$ MeV
e=B FIELD OFF(SET B=0, 4=T IN THE .INP FILE), $E_n \ge 0.1$ MeV (DEFAULT)
f=B FIELD OFF(SET B=0, 4=T IN THE .INP FILE), $E_n \ge 20$ MeV

Table 0.5: POWER OF DEPOSITED ENERGY IN KW, DW/W $\% = ((W_x - W_a)/W_a)$ x100 where x=b,c,e, in d and f are the percentage differences with c and e correspondingly (10/23/2010)

	G1	%	G2	%	Total	%
a	27.77	-	11.54	-	39.31	-
Ъ	13.09	-52.86	8.30	-28.08	21.39	-45.59
С	23.27	-16.20	12.63	+9.45	35.90	-8.67
d	11.06	-52.47	8.88	-29.69	19.94	-44.46
е	22.03	-20.67	12.42	+7.63	34.45	-12.36
f	10.87	-50.66	8.61	-30.68	19.48	-43.45

DEPOSITED ENERGY WHEN RESISITIVE COIL IS REPLACED BY SHIELDING MATERIAL.

Table 0.10: (10/18/2010)

REPLACING RC WITH 80% WC+20% H_2O (****)
N _p =100,000, STANDARD GEOMETRY,13 SC COILS, 2 SC groups:G1=1, G2=2-13
STANDARD SHIELDING WITH: 80% WC+20% H ₂ O, MARS+MCNP
SOLENOID MATERIALS: SC#1-13=SCON (NiTi+Cu+)
$E_p=8$ GeV, 4 MW BEAM, $\sigma_x=\sigma_y=0.12$ cm Gaussian distr.
$a = E_n \ge 0.1 \text{ MeV} (\text{DEFAULT})$
$b = E_n \ge 20 \text{ MeV}$
c=REPLACING RC WITH 80% WC+20% H_2O , $E_n ≥ 0.1$ MeV (DEFAULT)
d=REPLACING RC WITH 80% WC+20% H_2O , $E_2 > 20$ MeV

Table 0.11: POWER OF DEPOSITED ENERGY IN KW, DW/W $\approx ((W_x - W_a)/W_a)$ x100 where x=b,c, in d the percentage difference is with c. (10/18/2010)

	G1	%	G2	%	Total	%
a	27.77	-	11.54	-	39.31	-
b	13.09	-52.86	8.30	-28.08	21.39	-45.59
С	9.83	-64.60	10.45	-9.45	20.28	-48.41
d	4.41	-58.28	7.97	-23.73	12.38	-38.95

DEPOSITED ENERGY WITH 24 GeV BEAM.

Table 0.6: (10/26/2010)

$E_p=24 \text{ GeV}, 4 \text{ MW BEAM}, \sigma_x = \sigma_y = 0.15 \text{ cm Gaussian distr.}(****)$
N _p =100,000, STANDARD GEOMETRY,13 SC COILS, 2 SC groups:G1=1, G2=2-13
SOLENOID MATERIALS: SC#1-13=SCON (NiTi+Cu+)
a= MARS $E_n \ge 0.1$ MeV (DEFAULT)
b= MARS $E_n \ge 10^{-11}$ MeV
$c = MARS + MCNP E_n \ge 0.1 MeV (DEFAULT)$
d= MARS+MCNP $E_n \ge 10^{-11}$ MeV

Table 0.7: POWER OF DEPOSITED ENERGY IN KW, DW/W $\% = ((W_x - W_a)/W_a)$ x100 where x=b,c,e, in d is the percentage difference with c. (10/26/2010)

	G1	%	G2	%	Total	%
a	14.28	-	14.90	-	29.18	-
b	15.92	+11.48	14.99	+0.60	30.91	+5.95
С	15.45	+8.19	14.68	-1.48	30.13	+3.26
d	22.06	+42.78	16.30	+8.99	38.36	+27.31

NOTICE: NEW GEOMETRY RESULTS ARE WITHOUT OPTIMIZING PROTON BEAM AND MERCURY TARGET PARAMETERS.