PARTICLE FLUX CALCULATION-III

Sergei Striganov Fermilab May 24, 2006

Detector positions and particle fluxes per pulse (3 10^{13} protons).

Detector positions and particle fluxes per pulse (3 10¹³ protons).

Energy spectra (0 degree detector). Blue lines – all particles, red linesparticles created in attenuator.

Energy spectra (6.7 degree detector). Blue lines – all particles, red lines – particles created in attenuator.

Energy spectra (11.5 degree detector). Blue lines – all particles, red linesparticles created in attenuator.

Energy spectra (45 degree detector). Blue lines – all particles, red linesparticles created in attenuator.

Particle fluxes per pulse (3 10^{13} protons).

Neutral particles background. Particle fluxes per pulse (3 10¹³ protons).

Shielding efficiency.

Electron flux (p>18MeV/c) per pulse (3 10¹³ protons).

Energy spectra

angle between particle direction and cerenkov detector axis (degree)

Conclusions

- To estimate signal/background ratio in scintillator detectors we need to specify efficiency of detector as function of energy and particle type
- It is possible to obtain reasonable signal/background ratio in cherenkov detector using lead shielding. More detailed calculations (including simulation of cherenkov light?) is needed.