_

Status of the LBNE Neutrino Beamline

Vaia Papadimitriou
Accelerator Division Headquarters, Fermilab
L2 Manager for the LBNE Neutrino Beamline

NUFACT 2011

Working Group on Accelerator Physics

CERN/UNIGE
August 2, 2011

II{

ihelfongiBaselinelNeutrino]EXperiment:



Outline

* Introduction

* Design considerations and requirements for the
LBNE Neutrino Beamline

» Scope, Reference Designs

* Challenges (technical, radiological, spacial,
financial,...)

* Status of the conceptual design
» Conclusion

August 2, 2011 Vaia Papadimitriou 2



Yates Shaft

200kT WCD

Yates Shaft

August 2, 2

Long Baseline Neutrino Experiment

Minnesota;

Crmrs o 1300 kmg-
g 7 aDakota Wisconsin kc Michigan

Nebraska : b : » n\
' -4 Chlcago

Kansas
\ Image NASA 3= -
¢ 2008 Tele Atlas Missouri E . B
Image © 2008 TerraMetrics i GOOSIC
© 2008 Europa Technologies '
Pointer 43°03'56.44" N (95°10'42.53" WStreaming ||| 11100% Eye alt 1108.62 km



Additional milestones

NSF/DUSEL decoupling — February 2011

“DOE Office of Science Review of Options for
Underground Science” report available — June 2011

National Rerearch Council assessment of DUSEL
available — July 2011

DUSEL changes scope — SURF (Sanford
Underground Research Facility)

Waiting for DOE/Office of Science Decision

In the mean time LBNE is trying to reduce the overall
cost — significant value engineering effort.

CD-2 Review (baseline) expected in summer 2013
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Beamline Plans

« For the Beamline (NuMI style conceptual design) we had 8
Internal design and cost/ schedule reviews between April 2010
and September, 2010. CDR developed, September 2010.

« From October 2010 and on we entered in the 2"9/3" phase of
value engineering with the goal to reduce the cost significantly.
We have evaluated ~15 Value Engineering proposals so far. A
Technical Board was established in March 2011 to help review
the proposals as well as provide recommendations and advice
on important technical decisions . Two Reference Designs
developed and being pursued aggressively towards CD-1.

« Aiming for a technical review of the LBNE Near Site in
October/November 2011 and CD-1 Review in the Spring of
2012.
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Beamline Design Drivers

« The driving physics considerations for the LBNE Neutrino
Beamline are the long baseline neutrino oscillation analyses

where the primary objectives are:

— Search for, and precision measurements of, the parameters that
govern v, to v, oscillations (6,3, and if large enough, CP violating

phase 6 and mass ordering)
— Precision measurements of 0,3 and [Am?;,| in the v, disappearance

channel
« Wide band beam to cover the 15t and 2" oscillation maxima.
Optimizing for Ev in the range 0.5 -5.0 GeV.
 Flexibility to operate in the proton beam energy range of 60-
120 GeV.
 Start with a 708 kW beam (ANU/NOVA at 120 GeV), and

then be prepared to take profit of the significantly increased
beam power (~2.3 MW) available with Project X.
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Beamline Design Drivers

 There are a few systems in the Neutrino Beamline (including
underground spaces) that are conceptually designed for 2.3
MW in order to enable the facility to be upgraded in a cost
efficient manner and run with an upgraded accelerator
complex.

 The beam is aimed from Fermilab to the Homestake Mine in
South Dakota (48/7 degree horizontal bend, 5.8 degree
vertical bend).

* The Neutrino Beamline Facility will be contained within
Fermilab property.

 Stringent limits on radiological protection of environment,
members of public and workers.

« Maximize the distance between the target and the Near
Detector and allow for a muon range-out distance (Absorber to
Near Detector) of at least 210 m.
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Configurations considered

* Four separate beamline / facility configurations have been
defined with accompanying conceptual level cost estimates.
These are (varying extraction points and beamline depth):

— MI-60, Deep (similar to NuMI design) and MI-60, Shallow
— MI-10, Deep and MI-10, Shallow

* Deep options feature excavations in soil and in rock.

« Shallow options feature a large berm into which facilities
would be constructed. This is to minimize excavations in
rock.

* We have two reference conceptual designs: MI-60, deep and
MI-10, shallow

» Decay tunnel length varies between 200m and 250m (about
12% effect in # of Far Detector interactions). Diameter is 4m.
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The LBNE Neutrino Beamline Facility at Fermilab
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MI-60 Extraction, de
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MI-10 Extraction, shallow
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Radiological Requirements

* Design for 2.3 MW, 120 GeV proton beam.

 Member of the public at the Fermilab boundary should not
receive more than 1 mrem in a year from all radiation sources
originated from the LBNE beam line.

« Sheilding for protecting ground water:

— For the deep underground design aim to stay below 10% of the drinking
water limit and in the wells to be below the detection limit.

— For the shallow design concentrations outside the aquifer will be below
the detection limit.

* The current laboratory air emissions permit requires that the
annual exposure of a member of the public off-site to
radioactive air emissions from all sources should be less than
0.1 mrem. We are designing for LBNE contributions to be
between 30-50% of this limit to allow room for other Laboratory
projects.
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The Neutrino Beamline Scope

@nary B@(magnets, magnet power supplies, LCW,
vacuum, beam instrumentation, beam optics and beam loss
calculations)

Neutrino Beam (primary beam window, baffle, target, 2 focusing
horns, horn power supplies, target pile@y pipe, abso@
RAW itium mitigationy remote handling, modeling, storage of
radioactive components)

System Integration ( controls, interlocks, alignment, installation
Infrastructure)
«@Snal Facilities

Which systems are
significantly different in the
two reference designs
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Primary Beam Design Parameters

Beam Parameter
Protons per cycle

Cycle time (120/60 GeV)
Pulse duration

Proton beam energy
Beam power at 120 GeV
Operational efficiency

Protons on target per
year

Beam size at focus

Beam divergence X,y

Value

4.9 x 1013
1.33/0.76 sec
1.0 x 10 sec
60 to 120 GeV

708 kW
59%
6.8 x 1020

800.00

700.00

S wmm

600.00

15 mm ° 500.00
0017 ml‘ad " 4p000

L

(g =)

300.00

MI Power (KW)

200.00
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MI-60 extraction, deep

Beam optics
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Horizontal (solid) and vertical
(dashed) lattice function of the
LBNE transfer line. The lineis
comprised of distinct optical
modules & the final focus is
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range 60 — 120 GeV/c with &=
267 um (98%, normalized).
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MI-10 extraction, shallow
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Magnet count comparison between MI-60,
deep and MI-10, shallow

W e are considering as default Main Injector type magnets
although we have considered several alternatives

MI-60, DEEP MI10-SHALLOW
KICKERS 0 3
LAMBERTSON 0 3
C-MAGNET 0 1
6-3-120 2 0
EPB 3 0
IDA/IDB 34 12
IDC/IDD 8 12
3Q120 40 14
3Q60 8 4
IDS 44 17
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Target Hall/Decay Pipe layout (MI-10, shallow)

Work cell to be used for
replacement of components,
primarily horns

Air handling building
(~3500 SQ Ft)

Decay Pipe concrete
shielding (5.5 m)

Target Chase: 64” wide
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Iarqet Complex — MI-10, shallow
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Reference Design of the target system
with double layer cooling (IHEP/Protvino)

Figure 1. Target Assembily

120 GeV
protons

August 2, 2011

Target material: POCO ZXF-50

Radial thickness (mm)
IHEP design

7.65 graphite

—— 12.45 Total

: ~
H | \\ 0.3| stainless
T~ 1.7 water

0.3/ stainless
2.2 water
0.3 stainless

A row of 15.3 mm diameter and
95cm - | 25 mm length graphite segments
separated by 0.2 mm gaps.

Alternatives: Other graphites, C-C composite, HBN, Be
or thinner targets.
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BNL/BLIP irradiation study March-June, 2010
~ 9 weeks of beam

Beam in at 181 MeV, must reach isotope box at 112.65 MeV

| BLIP Drive Box
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Halder

Sdmple Cdpsule

lsotape Bdsket

August 2, 2011

Top View

)

BEAM

l

l

181 MeV

l

Six Argon capsules and
one Water capsule

)

P P

|

Js

| c—cap Carbon-carbon composite

/{ roco xF—s0 | NUMI target graphite

Japanese graphite
_Jeoz | Another graphite, higher

_ thermal shock metric
AT ] NuMI baffle graphite

———{ 16-430 + HBM | \

Highest therm. shock metric

vacUUM
| CaPSULE

T TR

L

SORER SRR ANNRNTS ANRNRE TR VRN NN R R

T TS

AT TS TTF

A

P PP

o

el 51
b /.Ia" o P P S A P P,

« 7

7 7 7077

R

7

G

N

)

Beam View of Samples and Holder

112.6 MeV

l

Vaia Papadimitriou



Target Samples from BLIP test

Irradiation damage in water-cooled 3D carbon composite
LBNE candidate target samples irradiated at BLIP.

I/

Peak integrated flux about
5.9e20 proton/cm?

Average over 1 sigma area about
4.6e20 proton/cm?

Argon|environment

Un-irradiated

HBN “used up”

Water-cooled
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Effects of accidental 2o off-centre beam on stress waves In
simply supported target rod

Be target R&D

Peak Von-mises stress as a result of 2sigma off centre beam [MPa]

800

700

600

500

400

300

200

100

Peak stress with off centre beam

0.7MW spheres
e==@=2.3 Mw spheres I
\ = 0.7 MW cylinder
== 2.3 MW cylinder
== == nominalyield strength and
endurance limitfor beryllium
== Max design stress (as specified
by Fermilab)
N
.\\
~—~
~3
| |
5 10 15 20

Diameter of cylinder or sphere [mm]

25

C. Densham et al. RAL report,
LBNE docs 2400/3247, Nov. 2010

For 700 kW operation of a 13 mm
diameter 1 m long beryllium
cylinder falls inside the chosen
design point stress. A series of
spheres could be fit even better

For 2.3 MW operation, a
cylindrical rod beryllium target
would have to be well above 21
mm in diameter in order to bring
the peak dynamic stresses below
the yield strength. The stressina
series of spheres can be kept
below the design point with
spheres of 13 mm diameter -
advantage of longitudinal

segmentation
23




Reference Design for the Focusing Horns

' > Horn 1

» Radius outer conductor: 30 cm
> Radius inner conductor: 2.0 cm (neck), Material: Al as default.
then parabolic Be considered as well.

» Length: 330 cm, neck: 100 cm
» Current: 300 kA

» Horn 2
» Radius outer conductor: 38 cm
» Double paraboloid inner conductor | NUMI Horn 2
» Length 353 cm
» Current: 300 kA

Plan View

Target inserted/mounted Steel Shield
into Horn 1.
Upstream end of target Yo e e Horn2

potos e
at -5 cm relative to the Ft,--}

upstream face of Horn 1.
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Decay Pipe Considerations

Far Detector Neutrino Interactions vs
Decay Pipe Length

Dimensions: Radius of 2m.
Length of 200-250 meters.

Interactions (Far)

Relative No.

Filling-Cooling : Air — filled and air-
— cooled pipe is the default. Helium-
30 <E <10. GeV filled pipe which is water cooled
and sealed-off from the target hall
IS an alternative.

DUSELN_ vs DK Length ®
I
100

10 k-

—— » In the deep option the decay region
| IS within a tunnel excavated in rock.
» In the shallow option a substantial
part of the decay region is in soil with
limited rock excavation required.

Solid lines: 1m radius
Dashed lines: 2m radius ||

|
700

01 L.
0 100

300 400
DK length (m)

200 500 600

August 2, 2011 Vaia Papadimitriou 25



Two Radiological Models

 In the deep design (NuMI like) groundwater Is
encouraged to migrate through the rock mass
toward and into the decay region where it can
be collected and transported away.

* In the shallow design, because of the presence
of a local aquifer at and near the top of rock
surface we cannot encourage groundwater to
migrate toward and into the decay region
(significant daily collection) and therefore we
have to provide a hard barrier.

August 2, 2011 Vaia Papadimitriou 26



MI-60 Extraction, deep (Decay Pipe shield thickness)
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MI-10 Extraction, shallow (Decay Pipe Cross Section)
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Direct Total Dose On-Axis from Decay Pipe
MI-10 Extraction, Target above grade
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LBNE Absorber Hall (longitudinal section)
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Comparison shallow vs deep
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Conclusion

« The LBNE Neutrino Beamline had a CDR and has
been at a technical status suitable for CD-1 review
since September 2010.

 Since then we developed and reviewed several
value engineering proposals with the goal of
reducing the beamline facility cost further.

* We have considered four “big picture”
configurations and have developed two (new)
reference designs.

* We are making very good progress in developing
them towards CD-1 (Spring 2012).
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Organization WBS 1.2

Level 2

1.2 Neutrino Beamline

ES&H: M. Andrews
BN | o diation Physics: D. Reitzner, K. Vaziri
Scheduling: K. Domann

L2 Mgr: V. Papadimitriou
L2 Eng: M. Campbell

Level 3

1.2.2 123
Primary Beam _
S. Childress Neutrino Beam

A.Chen, Deputy C.Moore

121 124

Project Management
V. Papadimitriou

System Integration
R.Andrews

The Neutrino Beamline Team

* From Fermilab’s Accelerator, Particle Physics and Technical Divisions, FESS and Accelerator
Physics Center.

* Also Collaborators/Contractors from ANL, BNL, IHEP (Protvino), RAL (UK), ORNL, Bartoszek
Eng., Design Inovations, U. of Colorado
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Beam Design Considerations

P(v —v)

0.10

0.09

0.08

0.07

0.06+

0.04+
0.03
0.02+

0.01+

0.05+

CP effects Mass hierarchy
2"d max 15t max
2 1
> :
i > 3 4 s
E, GeV
2.7 GeV
0.8 GeV

» Need a wide band beam to cover the
1st and 2nd oscillation maxima

\

Normal mass hierarchy

» Energies above 10 GeV not very useful

August 2, 2011
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MI-60, deep

MI-60 deep is the original CDR design as modified by
several VE proposals that include:

» Near detector hall and support room(s) size reduction and surface building size
reduction

* Depth of ND shallower due to reduction of muon range out distance from 320m to
210m and due to reducing Decay Pipe length from 250m to 200m

« Omit a ND shaft and add a small diameter egress tunnel to the absorber hall
 Remote handling crane radiation hardened crane features reduced
 Reduce shaft diameters in target, absorber, and near detector complexes

« Eliminate Project X crossing enclosure

« Omit master substation upgrade

« Use Tevatron power supplies for the primary beam magnets

August 2, 2011 Vaia Papadimitriou 36



FD interactions vs Decay Pipe Length

6CP /n

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

...|..||.r.]:..l.:.l...].|.||..|.|||.|.

DK

=2 Oﬁ radius

Length .y

?M15D

200

m 5

m i

m

m

25D
300

(=]

0.005 0.01 0.015 0.02 0.025

sin?26

0.03

0.035

0.04

0.045

0.05

FD Int Ratio

0.8

0.6

0.4

0.2

i O:. 0po°
-. o .. R
.... . H L F°H
._".... .:. P P

méﬁééagtéhéﬁ{?m“m"m.m"m"m.m"m"m.m“mm“_um“m“

1300 m/200 m

S B R Ezsomfzoom

B SC T, IS W N R

Illljllllillllillllillllillllillllillllillllillll

0 0.5 1

1.5 2 25 3 3.5 4 4.5 5
GeV
Energy

August 2, 2011

Vaia Papadimitriou

37



FD interactions vs Decay Pipe radius
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Accords, MOUs, SOWSs, Contracts

* We established collaborations with ANL, BNL, IHEP (Russia),
, RAL(UK), Bartoszek Eng., Design Inovations and made sure
we have sufficient supervision and integration effort at Fermilab.

v Accord with IHEP for the conceptual design of a 700 kW graphite
target.

o Complete

v MOU with ANL (2 MW target R&D) to investigate hydraulic shock in
the cooling water (water hammer effect).

o Complete

v MOU with BNL for a 9-week irradiation study at BLIP to investigate
candidate target materials (started in March 2010).

o Run complete. Analysis in progress.
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Accords, MOUs, SOWSs, Contracts

v'Accord with RAL (700 kW/2 MW R&D) to: investigate Be as possible
target material; cooling concepts; conceptual design for a beam window.

o Complete

v SOW with ORNL on remote handling issues.
o Complete

v SOW with Bartoszek Eng. on Baffle and Horn support structures.
o In progress.

v Contract with Design Inovations on magnet installation equipment.

o In progress.

v Expect to have MOU with University group(s) on target hall
Instrumentation after CD-1.
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Be target R&D

700 kW Beam Power Target Summary

For 700 kW operation of a 13 mm diameter 1 m long beryllium cylinder
fixed at one end and constrained radially at the other end with a 2.16 mm
beam sigma falls inside the chosen design point stress. The maximum
deflection for this case has been calculated as 0.6 mm near the centre of
the target. A series of spheres could be significantly smaller at the 700 kW
power level.

2.3 MWW Beam Power target summary

For 2.3 MW operation, a cylindrical rod beryllium target would have to be
well above 21 mm in diameter in order to bring the peak dynamic stresses
below the yield strength. The stress levels in the 2.3 MW cylinder are
dominated by inertial effects in the form of both longitudinally stress waves
and bending stresses induced by an off centre beam. The figure shows
that the stress in a series of spheres with the 2.3 MW beam can be kept
below the design point with spheres of 13 mm diameter. This result
Indicates the advantage of longitudinally segmenting the target.
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Graphite R&D

 Why Graphite?
— Excellent for thermal shock effects (lower Cp,

lower CTE, very low E, high strength at high
temperatures)

— Not toxic

— Not dual-use (normal/nuclear) technology (not
export controlled)

— Readily available in many grades and forms

* Why not Graphite?
— Rapid oxidation at high temperatures
— Radiation damage

August 2, 2011 42




Hybrid Targets

Y(cm)
o

Using hybrid targets, the pion yield
at the 2" maximum can be
increased by 50% without
changing the pion yield at the 1st
maximum. The high energy

pion yield can be also reduced

by > 50%.

LBNE Geometry Y-Z

HELIUM

Z(cm)

i M. Bishai, Yi Lu (Highschool)

GRAPHITE

Pion yields from a hybrid C-Ta target at 120 GeV
3

50 Target 1: € r=0.6cm, I=40cm C, Target 2: Ta r=0.6cm, I=23cm
Target 1: C r=0.45cm, |I=40cm, Target 2: Ta r=0.45cm, |I=23cm

Target 1: C r=0.60cm, 1=49cm, Target 2: Ta r=0.45cm, |I=23cm

Nested cylinders Target 1: C r=0.15cm, I=60cm, Target 2: Ta r=0.45cm, I=72cm

e
o
| [l L | [

N

Nested cylinders Target 1: C r=0.30cm, I=60cm, Target Z2: Ta r=0.60cm, I=72cm

—_
o

myield ratio C-Ta hybrid target/C only

E._GeV



Graphite R&D: Radiation Damage

.

Thermal conductivity (W/m - K)
5 3

@
<
1

G'raphiie !
IG-110U
O Unirradiated
50,02 dpa, 200C
©0.25 dpa, 200T
ETP -10
® Unirradiated
AQ,02dpa, 200C
¢0.25dpa, 200C
CX-2002V
® Unirradiated
40,01 dpa, 200C
©0.82dpa, 400C

4 A

February 3, 2011

0 400

800 1200
Temperature (C)

« Rapid degradation of properties
at relatively low levels of DPA

* Evidence of complete structural
failure at 1e21 p/cm? (BLIP test)




Irradiation Testing at BLIP

« About 150 samples in total

* Tensile samples have
gauge width of 3 mm and
thickness of 1 mm

181 MeV proton beam

o Peak integrated flux about 5.9e20
proton/cm?

o Average over 1 sigma area about
4.6e20 proton/cm



Absorber Requirements

« Absorber requirements - short list
— Designed for 2.3 MW beam power, 20 years
— Normal operation: 540 kW in absorber

— Dealing with 2.3-MW (~3-MJ for accident) beam energy
deposition in the absorber components.

— Water and air radiation protection

« Absorber Configurations (4 configurations):
— MI60 deep
— MI10target above grade (shallow)
— Decay Pipe length:
« 250 m — normal operation
« 200 m - energy deposition increases by ~ 8-10%

— Practically two options of the absorber mask & core, deep (250
m DP) and shallow (200 m DP)



Muon range out

B. Lundberg

Estimated of Penetrating Muon Flux

10°

Trend (rapid fall-off)
is clear, but need to
extrapolate orders
of magnitude

to reach intrinsic

—
o
o

2

mu flux (cm™ per spill)

® 120 GeV mu (normalized)

o  MARS full MC prediction baC kgrOU N d Of

0.01 1 ®™ mufrom120 GeV & (scaled to & c.s.)

neutrino-rock
Interactions

0.0001
-50 0 50 100 150 200

depth () > 200 m of rock required between
End of absorber and ND at 120 GeV
47
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MI-60, deep
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Decay Pipe Location (MI-10, shallow)

CONCRETE SPILLWAY OVE
EX. GRADE OVER DECAY PIPE WITH WATER
AT TARGET HALL | - PROOF MEMBRANE/ LINER

R

ELEV. 744+ | | S ———_ DEC FOR 100 YEAR EVENT

56.2' [200.0m T

ELEV. 700" ' " i

I Nﬁi\f:é:
ELEV. 650 \ /

| TARGET HALL | /

. APPROXIMATE = /

ELEV. 600 ROCK/SOIL INTERFACE ( {
STAC T TEO—EE V. oo ABSORBERHALL

ELEV. 550

W eathered rock/aquifer/radiological issues (geomebranes, etc.).
Some of the tritium mitigation aspects less complicated,
nevertheless no previous experience like in the NuMI case
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Conventional Facilities Overview
Beamline MI-60 deep
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0 and elevation views)

MI-10 Extraction, shallow (to
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Goal of Near Detector

Near Detector

Measure neutrino flux (v,, v, v, v,) vs energy

Measure neutrino cross sections vs energy (CC, NCx? NCy,
NC DIS, etc.) in H20 and Ar

Determine extrapolation of events from near detector to far

detector
Make physics measurements of interest in their own right Near Detector Hall: ~ 400 ft underground’

(e.g. sin20,,, As, sterile v decay, high Am? oscillations, etc.) '~ 112 ft long x 44 ft wide x 45 ft high

Magnetic field region

l‘ Decay Region

LAr Muon
H,O
TPC ranger

Main Options

* H2 or D2 Bubble Chamber or Target (Measure events at Q2~0
and determine v flux)

* LAr Detector (MicroBooNE or ArgoNeuT or LANNDD Design)
/ + Fine-Grained H20 Tracker (MINERVA/MINOS or HiResMv)

Evaluating

Alternative Options
* Small H20 Cherenkov Detector (flat PMTs)?
+ Large Offsite H20 Cherenkov Detector (~1 kton)?



Neutrino Detector
— water option

Magnet
— 3mx 3m x 5m volume
— 0.4Tesla
Tracker
— 2cmstraws
— 237cm length
— 30 XY modules
20 with water targets

ECal

—  Scintillator
5mm x 50mm profile
arranged x and y

— Lead sheets barrel/upstream
3mm thick
16 sheets

— Lead sheets downstream
1.75 mm thick
60 sheets

Muon ID

— RPCs interleaved in magnet
barrel

— Downstream muon identifier
RPCs and "“blue blocks”

Scintillator tracker is kept as an option



Neutrino Detector
— argon option

Magnet
— 4m x 4m X 5m volume
— 0.4 Tesla

Tracker

— MicroBooNE-like
— 1.8m x 1.8m x 3.0m TPC

ECal

— Scintillator
*  5mm x 50mm profile
* arranged x and y
— Lead sheets barrel
*  3mm thick
* 16 sheets
— Lead sheets downstream
e 1.75 mm thick
* 60 sheets

Muon ID

— RPCs interleaved in
magnet barrel

— Downstream muon
identifier RPCs and "blue
blocks™

e



Beam Line Muon Measurements

From G. Mills

Provide pulse-by-pulse monitoring of tertiary
muon beam to check beam line performance

Measure muon spectrum after the absorber pile
In an effort to constrain neutrino flux

Separation of positive and negative muons

Would like to measure muons coming from the
decay region down to ~ 2-4 GeV/c or lower
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Three-fold Strategy

Muon lon Chamber Array

— spatial distribution of muon flux for primary beam monitoring and
flux cross checks

— Pulse-by-pulse muon rate measurements

Stopped muon detectors

— Uses range of muons to measure spectrum and separation of
positive and negative muons

— Detect muon decays via Cherenkov light (positive muons)
— Detect negative muon captures via °B ground state decays
Pressurized threshold Cherenkov counters

— Measure spectrum down 2-4 GeV (?7?) (decay pipe)

— Could be used in a few locations where the absorber is modified for
this purpose (absorber design still in flux)
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