What do we need?

René Flükiger

Dept. Phys. Cond. Matter (DPMC) & TE-MSC-SCD CERN

In the following, analysis will be restricted on Nb₃Sn (quadrupoles) MgB₂ for current leads: talk of M. Putti BI-2212: not yet developed at an industrial level.

Starting point of the present considerations: Calculations of F. Cerutti (CERN), 2010 (newer calculations in his presentation, today)

Neutron fluence in the inner winding of Quadrupoles (LHC Upgrade)

Neutron spectrum in the inner coil of Q2a at peak location

Proton spectrum in the inner coil of Q2a at peak location

WAMSDO 2011 Workshop (CERN), 14.11.11

Pion spectrum in the inner coil of Q2a

Peak Fluence, LHC Upgrade (5 x 10³⁴ cm⁻² s⁻¹)

Radiation spectrum at Q2a: 35m from Collision Point

Aperture	200mm	<u>130mm</u>	<u>130 mm</u>	
Photons	88.93	89.00%		
Neutrons	4.82	4.04%	4.04%	
Protons	0.14	0.13%	0.13% ⁻]
Pions+	0.19	0.19%	0.19%	0.57%
Pions-	0.26	0.25%	0.25%	
Electrons	4.31	4.63%		
Positrons	2.23	2.45%		
	Protons + Pions(+) + Pions(-) Neutrons			

Question: How do the magnets (quadrupoles) behave after 10 years of operation?

Study to be carried out for each high energy source:

- * the superconductor T_c , J_c , H_{c2}
- * the stabilizing Cu ρ (T)
- * the insulator mechanical properties, electrostatic charges,...
- * the magnet combined effects, quench behavior, volume changes (expansion of Nb₃Sn, Cu and insulator)

Keep in mind:

- * all high energy sources act simultaneously
- * there is no experience on a combined effect of several high energy sources
- * subsequent irradiations with different sources should be carried out on selected samples
- * calculations must be carried out to study combined irradiations

 (taking into account the small values of dpa, this may be possible

Known effects of radiation on superconductors

Neutrons : Strong source of damage for superconductors

Protons: From known data, even stronger effect (charge)

Pions: Nothing is known yet. Effects expected to be comparable to those of protons (charges +/-)

Electrons: Very little is known. Much smaller effects expected (in contrast to insulators). More data needed

Photons: Nothing is known. Smaller effects expected. Data needed

What should be analyzed about irradiation of the superconductor?

Damage Mechanism (atomic ordering); Comparison with heavy ion irradiation

Effect of various energy sources

Number of displacement per atoms

Summation of single irradiations (small dpa numbers)

Irradiation at 4.2K and 300K

Volume expansion of Nb₃Sn; Effect of repeated warming up and cycling on irradiated superconductors

Thermal stabilization: Recovery behavior of Cu?

Mechanical properties of the superconductor after irradiation

Mechanisms of irradiation damage

Due to limited data, results from heavy ion irradiation are also taken into account

WAMSDO 2011 Workshop (CERN), 14.11.11

R. Flükiger,¹³1986

Effect of neutron irradiation on T_c

B.S. Brown, R.C. Birtcher, R.T. Kampwirth, T.M. Blewitt, J. Nucl. Materials 72(1978)76

T_c of Nb₃Sn after 1 MeV neutron irradiation

A.R. Sweedler, D.G. Schweizer, G.W. Webb, Phys. Rev. Lett. 33 (1974) 168

Recovery of Nb₃Sn films after irradiation at T < 30K with 25 MeV O-ions (B. Besslein, 1976)

Recovery Effects after warming up

Neutron irradiation of a multifilamentary Nb₃Sn wire, followed by an anneal of 5 min. at T_{ann} .

B.S. Brown, T.H. Blewitt, T.L. Scott, D.G. Wozniak,, J. Appl. Phys.49(1978) 4144 WAMSDO 2011 Workshop (CERN), 14.11.11 19

At 1 x 10¹⁸ n/cm², volume expansion of Nb₃Sn is \approx 1%: * internal stresses? * effects on J_c?

Suppression of martensitic transformation in Nb₃Sn films irradiated with 20 MeV ³²S ions at < 30 K (2 x 10^{15} cm⁻²) (C. Nölscher, 1984)

Irradiation of binary and ternary alloyed Nb₃Sn

 $I_c(max)$ are different for different neutron sources:

When comparing the effect of irradiation for different neutron sources e.g. 1 MeV and 14 MeV, the fluences have to be considered carefully, and the appropriate corrections have to be made

Behavior of J_c under stress after irradiation

Stress - strain curves before and after irradiation

Effect of uniaxial tensile strain after irradiation

T. Okada, M.Fukumoto, K.Katagiri, K.Saito, H.Kodaka, H.Yoshida, IEEE Trans.Magn. MAG-23(1987)972

The effect of proton irradiation on Nb₃Sn (thin films)

Maximum of I_c after proton irradiation

g					
	Binary Nb ₃ Sn wires (and films):				
	Maximum of I _c : neutrons: 8 x 10 ¹⁷ n/cm ²				
	protons: <mark>6 x 10</mark> 16 p/cm ²				
	Ternary Nb ₃ Sn wires:				
	Maximum of I _c : neutrons: 2 x 10 ¹⁷ n/cm ²				
	protons: ?				

Still necessary to know behavior after proton irradiation, in spite of 3% fluence with respect to neutrons !

Even more necessary: behavior under pion irradiation. Total damage of protons + pions becomes comparable to that caused by neutrons

Planned operations at CERN

- L. Bottura A. Ballarino G. De Rijk
- C. Scheuerlein T. Spira PhD, will start January 2012 R. Flükiger

Calculations: Collaboration with F. Cerutti (CERN) F. Broggi, Milano) Planned operations at CERN - 1 Neutron irradiation, 1 MeV, Collaboration with Atominstitut Vienna Material: Nb₃Sn with additives (Internal Sn, PIT) Ti Ta (activation!)

Neutron irradiation of Nb₃Sn wires at 1 MeV and 14 MeV has already been performed 20 years ago

However, new investigation on high J_c wires with precisely determined neutron fluence at 300K (see the presentation of Harald Weber)

Goal of the collaboration with Atominstitut Vienna:

- 1: Confirm the systematic difference between binary and ternary alloyed Nb₃Sn wires after neutron irradiation
- 2: Establish the maximum of J_c vs. fluence; find out at which fluence the values of J_c and H_{c2}
- 2: Comparison between resistive and inductive J_c measurements on Internal Sn and PIT wires T. Baumgartner et al., MT22 (H. Weber's talk)

Advantage: once the scaling is established, J_c can be determined on 3 mm wire pieces by magnetization. This result will be used for measuring J_c in proton irradiated wires **Planned operations at CERN - 2**

Proton Irradiation at various energies

Material: Nb₃Sn Internal Sn and PIT wires, with Ta and Ti additives

Collaborations with:

* Kurchatov Institute (Russia)	35 MeV	10 ¹⁸ p/cm ²
* Université catholique,	65 MeV	10 ¹⁷ p/cm ²
Louvain la Neuve, Belgique		
* CERN:		
IRRAD1	24 GeV	10 ¹⁷ p/cm ²
ISOLDE	1.4 GeV	10 ¹⁸ p/cm ²

First magnetization measurements of wires after decay: after mid 2012

Proton irradiations at Kurchatov Institute: Program

Duration : Proton energy: Temperature: Maximum fluence:	24 months 35 MeV 300K (+ heating due to proton impact) 1x 10 ¹⁸ p/cm ²		
Tasks on irradiated wires:	J _c by magnetization measurements*)**) Electrical resistivity vs. T T _c TEM Lattice parameters		
Tasks on irradiated bulks:	Long range atomic order parameter*)		
Calculations:	dpa calculations for proton irradiation		
*) Measurements will be performed at CERN			

**) Transport J_c on proton irradiated wires: will be done later

Conclusions (superconductors)

We are still at the beginning of our investigations:

- *Need for proton and pion irradiations of Nb₃Sn wires
- *Are binary or ternary alloyed Nb₃Sn wires better?
- *How has the volume expansion (1% at 10¹⁸ n/cm²) to be taken into account?
- *Irradiations at 4.2K still necessary (very small number, for comparison)
- *Warming up and cooling cycles needed for reliability tests
- *New devices for testing at 15 T needed
- *New devices for mechanical testing needed
- *Calculations needed: dpa, but also combined irradiations