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Overview: ITER 

 

300-500 s 

INTRODUCTION 



LOW TEMPERATURE PHYSICS 

ITER Magnet System (5 K / 6.5 K)  

Central Solenoid (CS) 

(Bmax~13 T) 

Toroidal Field (TF) Coils 

(Bmax~12 T, I = ~ 70 kA) 

Poloidal Field (PF) Coils 

Bmax~ 6 T 

Bmax~ 5 T 

Bmax~ 4 T 

Nb3Sn and NbTi 
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• The ITER project sets new limits for conductor and coil dimensions: 

 Currents of up to 68 kA 

 Coils of up to 13 m (Nb3Sn) and 24 m (NbTi) in diameter 

• More than 530 t of Nb3Sn strands are required for the TF and CS coils 

• About 300 t of NbTi strands are required for the PF and CC coils 

• HTS current leads are fabricated using Bi-2223 tapes up to 68 kA 

 

 

 

The ITER magnet system is a challenge for industry, 

worldwide … 
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Production of 14 MeV neutrons – deposition of energy in the “first wall”  

 substantial materials problems (~1 MW/m²)! 

At the magnet location: Attenuation by a factor of ~ 106. Scattering processes 

 lead to a “thermalization” of the neutrons! 
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DAMAGE ENERGY SCALING  

 
  (E) neutron cross section 

  T(E) primary recoil energy distribution 

  F(E) neutron flux density distribution 

  t irradiation time in the neutron spectrum F(E) 

  

  < (E) . T(E) >  displacement energy cross section 

 

  ED = < (E) . T(E) > . F(E) . t damage energy (total energy transferred to each 
    atom in the material) 

 

 SUCCESSFUL SCALING OF Tc AND Jc IN METALLIC SUPERCONDUCTORS 

   

 PREDICTIONS OF PROPERTY CHANGES IN AN UNAVAILABLE NEUTRON 
SPECTRUM ARE FEASIBLE! 

  

   



LOW TEMPERATURE PHYSICS 

Normalized group flux densities:  

excellent agreement with power plant design studies 
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SUPERCONDUCTORS 

Radiation will affect 

 TRANSITION TEMPERATURE Tc 

 - through disorder:  unlikely in alloys 

    effective in metals and ordered compounds 

 NORMAL STATE RESISTIVITY n 

 - through the introduction of additional scattering centers 

    very small in alloys 

    significant in metals and ordered compounds 

 UPPER CRITICAL FIELD Hc2 

 - through the same mechanism:      n  1/ l     Hc2 

 CRITICAL CURRENT DENSITY Jc 

 - through the production of pinning centers 
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DAMAGE PRODUCTION in LT SUPERCONDUCTORS 

FAST NEUTRONS (E > 0.1 MeV)  

 Displacement cascade initiated by the primary knock-on atom, if 

 its energy exceeds 1 keV 

EPITHERMAL NEUTRONS (1 – 100 keV) 

 Point defect clusters 

THERMAL NEUTRONS 

 Transmutations, point defects 

 

g-rays:  No influence 

 

NB: Stable collision cascades in materials with low conductivity, e.g. HTS 
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RESULTS 

 

The “Workhorse”: NbTi 

 

A15 Superconductors:  

 

• Nb3Sn 

• Alloyed A15’s: (Nb,Ti/Ta)3Sn 

• Advanced A15’s: Nb3Al 

• Recently developed A15’s 
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Results on NbTi 

  

 

 

SMALL EFFECTS on Jc  -  depending on the initial  

 micro-structure for flux pinning 

 

SMALL DECREASE of Hc2 - caused by a 

  

 SMALL DECREASE of Tc 

 

 

• Results typical for materials with a high degree of disorder 

 

• Initial optimized defect structure for flux pinning is “disturbed” 
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A15 SUPERCONDUCTORS 

!! Scale not accurate: maximum fluence around 7-10 x 1023 m-2 (E>0.1 MeV) !! 
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New set of irradiation experiments 

 

RRP (OST): (NbTa)3Sn 

RRP (OST): (NbTi)3Sn 

PIT (Bruker EAS): (NbTa)3Sn 

(OST): Nb3Sn 

RRP-Ta 
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T = 4.2 K, 6 T 
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SUMMARY: Nb3Sn 
  

SIGNIFICANT (and later on drastic) EFFECTS on Tc  -  caused by disorder 

  

SIGNIFICANT ENHANCEMENTS OF Jc (followed by a precipitous drop) 

  

  - increase caused by an increase of Hc2 - mean-free-path effect 

 - drop caused by the Tc degradation   

 

Typical for materials with a high degree of order 

 

 

SUMMARY: alloyed Nb3Sn (Addition of small amounts of Ti or Ta) 

  

Mean-free-path effect enhances Hc2  ENHANCEMENT OF Jc (at low temp) 

 

But additional scattering centres due to neutron irradiation lead to an earlier 

decrease of Jc (at lower fluence) 

 

Similar results on  Nb3Al 
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STABILIZER 

 

Normal state resistivity essential for stabilization and 

quench protection 

 

In-field resistivity experiments on copper 

 

Irradiation must be done at low temperature (~ 5 K) due to 

substantial annealing 

  

 (most low temperature irradiation facilities have been 

shut down, only one 14 MeV source available in Japan) 
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• Resistivity measurement at 10 K 

• Neutron irradiation at the IPNS spallation source at 5 K 

• Warm-up cycle to RT 

• Resistivity measurement at 10 K 

Multifilamentary 

NbTi-conductors 

 

#34: RRR ~ 60 

#35: RRR ~ 120 

#36: RRR ~ 120 
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• The cooling power could be reduced by 21 %, if operation at 50 K 
instead of 4.5 K could be achieved. 

• The radiation shields could be significantly reduced and simplified. 

• Higher magnetic fields could be achievable. 

• Smaller coil geometries would become feasible. 

The challenge: HTS for DEMO ?? 

HTS Magnets ? 

YBCO, 

BiSCCO, MgB2 

ITER DEMO 
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1) MgB2 (Tc ~39 K) 

Low temperature (5 – 10 K) and intermediate field (< 10 T) application (PF) 

2) Bi-2212 (Tc ~87 K)  

ITER like fields up to 25 K (intrinsic limit) 

3) Bi-2223 (Tc ~110 K) – 1G conductors  are now being replaced by RE-

123 coated (2G) conductors 

ITER like fields up to 30 K (intrinsic limit)  

4) RE-123 (Tc ~92 K)  

ITER like fields up to 60 K, higher temperature operation possible 

HTS for high field applications at higher temperatures  

  higher operating fields and/or less cryogenics 
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 

 
Dipole strand 

ITER IT strand 

 Performance settled after 2006 

 Production of ~1 km long wires: ex-situ ok, in-situ improving, many suppliers 

 Higher field applications only at lower T 

[M. Eisterer, ATI 2006]  
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Critical Current Densities at 4.2 K 

Sufficient current densities only at fields below ~ 10 T 

Low cost alternative at low temperatures (< 10 K, PF coils) ? 
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– Substrate: Cr-Ni stainless steel 

– Buffer stack: Y2O3/YSZ/CeO2 

• YSZ: Ion beam assisted deposition  

(IBAD) 

– YBCO (2.5 µm) 

• Pulsed-laser-deposition (PLD) 

– Silver or gold protection layer 

• Vapor deposition 

– Stabilization: Copper ( ~ 17 µm) 

• Galvanic plating process 

– Total thickness: 0.120 mm   Jc/Je = 50 

 

 

 

Coated Conductors 

European High Temperature Superconductors (EHTS) 
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Critical Current Densities 
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Y-substituted (or mixed) RE-123 compounds (not yet commercially available):  

Jc is less field dependent at high temperatures!! 
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Neutron irradiation effects on Jc for fields parallel c: AMSC 

• Decrease of JC at low fields 

• Increase of JC at higher field 

• The crossover indicates a 
change in flux pinning 

Crossover field (mT) 2x1021 m-2 4x1021 m-2 1x1022 m-2 

77 K 244  382  630  

64 K 114  219  440  

50 K 130  195  334  
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Summary: Critical Current Density (JC) 
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• The ellipses represent possible design requirements for fusion magnets (ITER 
specification). A field of around 6 T is specified for the ITER PF coils and of around  

 13 T for the CS/TF coils. 

• The range of current densities between 108 Am-2 and 1010 Am-2  is highlighted. 
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SUMMARY and CONCLUSIONS 

• LT Superconductors: No problems regarding 
radiation effects expected for ITER 

 

• Stabilizer: Degradation must be kept in mind 

 

• HTS: Substantial R&D still required, especially 
with regard to high-amperage cables 
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