

Wir schaffen Wissen – heute für morgen

The SINQ solid spallation target – operational experience and recent improvements

Werner Wagner, Michael Wohlmuther, Hajo Heyck, Knud Thomsen, Peter Vontobel, Yong Dai

Paul Scherrer Institut, Switzerland

Outline

- Development initiatives for the (solid) SINQ spallation target
 - a view back in history
- Materials qualification, addressing
 - cladding tubes for the solid Pb-target
 - **STIP:** the SINQ Target Irradiation Program
 - − …⇒ targeting at the MEGAPIE liquid metal target
- Conclusion

SINQ targets

Start-up target: solid Zirkaloy rods 1997-1999

Lead-'Canneloni' Target in stainless steel cladding 2000-2005: ⇒42% more

neutrons

The new Zr-Pb compact ,cannelloni⁶ target for SINQ

60% increase in neutron yield !!

Outline

- Introduction to SINQ
- Development initiatives for the (solid) SINQ spallation target
 - a view back in history
- Materials qualification, addressing
 - cladding tubes for the solid Pb-target
 - STIP: the SINQ Target Irradiation Program
 - $\dots \Rightarrow$ targeting at the MEGAPIE liquid metal target
- Conclusion

Qualifying Zircaloy for canning

Concern: Degradation by hydride formation

2002/3: SINQ-Target 4 (Mark III) with stainless steel canning

2004/5: SINQ-Target 5 with Zircaloy clad test tubes

Temperatures during an unintended beam focussing, October 2004

PAUL SCHERRER INSTITUT

VIMOS: optical visualisation of the beam footprint in front of the SINQ beam window

VIMOS insert with Tungsten mesh

light spot from a focused beam caused by a wrong quadrupol parameter setting

(October 2004)

VIMOS observed the incident, but was still in test phase, not yet set ,sharp' PAUL SCHERRER INSTITUT

	Nuklid	Aktivität	MUS	Bezugsdatum
OctDec. 2005: High Activity	H-3	7.56 GBq/kg	5%	23.12.2005
in Target Coolant	BE-7	630400. Bq/l	3%	23.12.2005
	MN-54	942.4 Bq/l	21%	23.12.2005
	CO-58	379.5 Bq/l	42%	23.12.2005
	RB-84	1514. Bq/l	47%	23.12.2005
Sampla	SR-85	1528.Bq/l	23%	23.12.2005
Sample	ZR-95	3313. Bq/l	14%	23.12.2005
S	NB-95	6782.Bq/l	12%	23.12.2005
	RU-103	5188. Bq/l	10%	23.12.2005
	SB-124	3670 Bq/I	9%	23.12.2005
L-K-OAN Real IN	XE-127	252700. Bq/l	1%	23.12.2005
automess S/N8 4 6 1 7	HF-175	2074. Bq/l	67%	23.12.2005
	RE-184	24060. Bq/l	7%	23.12.2005
	OS-185	26290. Bq/l	4%	23.12.2005
	IR-192	8730. Bq/l	5%	23.12.2005
Funktionsprüfung	AU-195	37300. Bq/l	9%	23.12.2005
2005-2	HG-203	24980. Bq/l	3%	23.12.2005
	BE-7	29500. Bq/l	3%	23.12.2005

Zr-clad rod:

visual inspection after 2 years in SINQ (>10Ah of accumulated proton charge):

Neutron tomography: Zr-clad test rod

Metallographic investigation: Zr-rod 06-3

Searching for the object of failure

Neutron radiographs from damaged (steel-clad) target rods

Outline

- Introduction to SINQ
- Development initiatives for the (solid) SINQ spallation target
 - a view back in history
- Materials qualification, addressing
 - **STIP:** the SINQ Target Irradiation Program
 - − …⇒ targeting at the MEGAPIE liquid metal target
- Conclusion

Target 4, carrying thermocoulpes and STIP samples loading plan **STIP samples:** The SINQ Target Irradiation Program 8 21 08 S lob setomas qridulich setuspa Cgl setuspa C B b setuspa C B b f A B C MEI, eugitaF, etsne MET, eugitaF, etsne⊺ 2 MET, eugita F, elisne T 3 4 5 6 MET, disneT, rab dneB MÉT, elisne T SNAS CS, Wdald aT, TC MET, elisneT, rab dneB PAT, SNAS, eugt af 7 8 set prnas er bif no bra C MET, elisne T, rab dne B 6 01 stepmasyprah (21) sepmasyprah (21) sepmasyprah (21) sepmasyprah (21) sepmasyprah (21) ehtfoslaireta meh T:eto N nae Bnd ar P lenoch ,leet Sera set p mas . yinia myolacri Z e puoco mehTe 99 21 31 Y

Selected STIP results: FM steels – tensile properties

Irrad. >1dpa/<400°C: almost no uniform elongation left

Dai, et al. JNM, 377 (2008) 115.

Selected STIP results: FM steels – DBTT shift

Example 1: Steel samples in Hg containing capsules

Before irradiation

Neutron radiography revealed that one of the central Hg capsules which had received the highest dose was penetrated and leaking

Example 2: Steel samples in LBE, T_m=125°C

Before irradiation

After irradiation (max dose: 18.6 dpa)

Target Rod B

contains a PbBi (about 38 g) filled T91 capsule. Inside PbBi there are about 50 test samples for studying irradiation assisted corrosion effects of PbBi on different kinds of materials.

Neutron radiography showing the samples (small tensile samples and TEM discs) in Pb-Bi are still existing, even at the highest irradiation dose

T91 steel tensile specimen after 2 years of irradiation (12 dpa) at 210 to 250°C: **NO** severe LBE corrosion, **NO** evident failure.

...a necessary prerequisite for the design and licensing of **MEGAPIE**, the liquid metal (LBE) target project

PAUL SCHERRER INSTITUT

MEGAPIE MEGAwatt Pilot Experiment:

a joint international initiative to built and operate a liquid metal (LBE) spallation target at 1 MW beam power

ASQ

primarily driven by ADS initiatives for wast transmutation

Operated in SINQ in 2006 for 4 months

A none-too-pleasant incident:

Heat exchanger failure in the D₂O moderator system

PAUL SCHERRER INSTITUT

Remedial actions

Repair moderator HX

He leaktest of repaired Moderator HX

- > Modestly drain and replace the contaminated H_2O
- Install an intermediate (uncontaminated) D₂O loop
- Recover the reduced neutron flux

....by (ingeniosly) exchanging the degraded D_2O moderator coolant with ('clean') target- and targetwindow coolant D_2O .

...which needed only 600 I fresh D_2O to be replenished into the ~6 m³ containing moderator system

Summary

During 14 years of operational experience:

SINQ spallation target development is an on-going effort at PSI

- ...aiming for optimised neutron yield, longer lifetime, higher-power sustainability
- STIP
- ...is actively conducting post-operation inspection/investigation
- ...where neutron imaging is a most valuable tools

.....and was very successful so far

Thank you for your attention

