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• The cooling power could be significantly reduced.
• The radiation shields could be significantly reduced and simplified.
• Higher magnetic fields could be achievable.
• Smaller coil geometries would become feasible.
• Could He be replaced?

From ITER to DEMO

HTS Magnets ?

YBCO, 
BiSCCO, MgB2

ITER DEMO
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Options / Materials

“Demo” design (magnetic field, temperature, fluence)

• Cheaper: MgB2

• Higher fields: HTS
Bi-2212: ≤ 10 K
Bi-2223: ≤ 20 K
Coated conductors (RE-123): ≤ 50 K

• Higher temperatures:
Coated conductors (RE-123) ~ 65 -77 K
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Production of 14 MeV neutrons – deposition of energy in the “first wall” 
substantial material problems (~1 MW/m²)!

At the magnet location: Attenuation by a factor of ~ 106. Scattering processes 
lead to a “thermalization” of the neutrons!

The lifetime fluence of the ITER magnets amounts to 1 x 1022 m-2 (E > 0.1 MeV)

NEUTRON SPECTRA
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DAMAGE ENERGY SCALING

(E) neutron cross section
T(E) primary recoil energy distribution
F(E) neutron flux density distribution
t irradiation time in the neutron spectrum F(E)


< (E) . T(E) > displacement energy cross section

ED = < (E) . T(E) > . F(E) . t damage energy (total energy transferred to each 
atom in the material)

SUCCESSFUL SCALING OF Tc AND Jc IN METALLIC SUPERCONDUCTORS


PREDICTIONS OF PROPERTY CHANGES IN AN UNAVAILABLE NEUTRON 
SPECTRUM ARE FEASIBLE!
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DAMAGE PRODUCTION in SUPERCONDUCTORS

FAST NEUTRONS (E > 0.1 MeV)

Displacement cascade initiated by the primary knock-on atom, if 
its energy exceeds 1 keV

EPITHERMAL NEUTRONS (1 – 100 keV)

Point defect clusters

THERMAL NEUTRONS

Transmutations, point defects

-rays: No influence

HTS: Fast neutrons produce stable collision cascades because of 
their low conductivity
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FAST NEUTRONS (E>0.1 MeV)

COLLISION CASCADES,
IF THE ENERGY OF THE 

PRIMARY KNOCK-ON 
ATOM EXCEEDS 
 1 keV

 
 

STATISTICALLY DISTRIBUTED 
 

~ SPHERICAL, ~ 2.5 nm Ø 
 

SURROUNDED BY A STRAIN FIELD 
OF THE SAME SIZE 

 
5 x 1022 defects m-3 per 1022 neutrons m-2 

 

 

Neutron-induced Defects in HTS

M. Frischherz et al.: Physica C 232, 309 (1994)



LOW TEMPERATURE PHYSICS

YBa2Cu3O7- - Y-123
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CONSEQUENCES FOR THE PRIMARY SUPERCONDUCTIVE PROPERTIES:

Introduction of disorder – mainly O-displacements
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F.M. Sauerzopf: PRB 57, 10959 (1998)M. Eisterer et al.: Adv. Cryog. Eng. 46, 655 (2000)
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H || c

H || a,b

Consequences for flux pinning



LOW TEMPERATURE PHYSICS

M. Kraus et al.: Phys. Bl. 50, 333 (1994)

The same defects act differently in different materials

Example: parallel columnar defects
c-axis

Y-123 (“3D”): Peak for H parallel to columns

Bi-2212 (“2D”): Reduction of Jc anisotropy
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Experimental Jc data
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F.M. Sauerzopf: PRB 57, 10959 (1998)
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Connolly et al., TU-Delft 2000

Model defects in “2D” Bi-2223 tapes
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Y-123: Similar behavior of fission tracks 
and collision cascades

M. Eisterer et al.: SUST 11, 1001 (1998)
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• “3D” HTS:

Strong pinning of flux 
lines for H || c

Reduced intrinsic pinning 
through disorder (H || a,b)

• “2D” HTS:

Pinning of a few individual 
pancakes
Reduced intrinsic pinning 
through disorder (H || a,b)

SUMMARY: NEUTRON - INDUCED DEFECTS
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1) MgB2 (Tc ~ 39 K)
Low temperature (5 – 10 K) and intermediate field (< 10 T) application (PF)

2) Bi-2212 (Tc ~ 87 K)
ITER like fields up to 25 K (intrinsic limit)

3) Bi-2223 (Tc ~ 110 K) – 1G conductors  are now being replaced by RE-
123 coated (2G) conductors
ITER like fields up to 30 K (intrinsic limit) 

4) RE-123 (Tc ~ 92 K)
ITER like fields up to 60 K, higher T operation possible

PRACTICAL MATERIALS

4 HTS compounds suitable for fusion applications

Magnetic field applications at T > 50 K only with RE-123 HTS compounds
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Pure MgB2 is anisotropic:  = Hc2
ab/Hc2

c  ~ 5

Grains are randomly oriented: 

different upper critical fields in different grains!

Distribution function:
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“Irreversibility line” can be shifted by an increase of Bc2 and / or by a reduction 
of the anisotropy: 

Neutron irradiation increases Bc2 and decreases .
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Neutron irradiation: 

Bc2 ↑                 B=0 ↑                 Jc(B) ↑ at high magnetic fields
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Introduction of defect cascades is less important, grain boundary pinning is dominant !

M. Eisterer et al.: SUST 15, 1088 (2002) 
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M. Eisterer et al.: Phys. Rev. Lett. 90, 247002 (2003)
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EXTRAPOLATED PERFORMANCE at 4.2 K
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Coated conductors

Focus on commercial tapes
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Microstructure

Key elements:

• Jc
GB (grain boundaries – inter-grain 

currents)
– relevant at small fields
– grain boundary angle
– doping

• Jc
G (grains – intra-grain currents)

– relevant at high fields
– pinning centres

• Jc vs. field orientation

• Homogeneity along (long) lengths

current
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Irreversibility Lines
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Bruker 7.7 T
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Neutron irradiation

• Jc
intra: improved

• Jc
inter: degraded
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Neutron irradiation effects on Jc for H parallel c: 
Bruker HTS



LOW TEMPERATURE PHYSICS

Neutron irradiation effects on Jc anisotropy: AMSC

• Reduced critical currents for fields 
parallel a,b

• Improved critical currents for fields 
parallel c

• At higher neutron fluence:  second 
peak



LOW TEMPERATURE PHYSICS

Summary: Critical Current Densities (JC)
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• The ellipses represent possible design requirements for fusion magnets (ITER 
specification). A field of around 6 T is specified for the ITER PF coils and of around 
13 T for the CS/TF coils.

• The range of current densities between 108 Am-2 and 1010 Am-2  is highlighted.

H||a,b H||c
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The engineering critical current densities JE need to be improved!
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… but alternative materials exist … RE-123 (RE = Nd, Sm, Gd)

Higher Tc                       →             Higher irreversibility fields at 77 K

M. Eisterer et al.: Adv. Cryog. Eng. 46, 655 (2000) R. Fuger et al.: Physica C 470, 323 (2010)
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… and new commercial cc’s, partly with artificial pinning centers

intrinsic pinning

correlated pinning

shoulders
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… but we need

cables with highly demanding performance at high fields and temperatures

 high amperage (some 10 kA)

 long lengths

 high homogeneity

 low Jc anisotropy

 low ac losses

 high stress tolerance

e.g. Roebel cables or striated conductors
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Homogeneity of cables or striated tapes (magnetoscan analysis)

• Homogeneity of the cable
• Identify damage of single strands

Striated tape
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CONCLUSIONS

• Cc‘s are close to the field requirements of ITER / DEMO magnets at elevated 
temperatures

• Neutron irradiation is beneficial as long as Tc is not too much depressed ()

• Neutron irradiation reduces the Jc anisotropy (may not be so important – AP’s!)

but

• Cable development is needed

• Y-substitution may be advisable

• Neutron irradiation to higher fluences is required

• Homogeneity issues must be carefully addressed

and

• all the other issues discussed at this conference must be solved!!
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