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• The cooling power could be significantly reduced.
• The radiation shields could be significantly reduced and simplified.
• Higher magnetic fields could be achievable.
• Smaller coil geometries would become feasible.
• Could He be replaced?

From ITER to DEMO

HTS Magnets ?

YBCO, 
BiSCCO, MgB2

ITER DEMO
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Options / Materials

“Demo” design (magnetic field, temperature, fluence)

• Cheaper: MgB2

• Higher fields: HTS
Bi-2212: ≤ 10 K
Bi-2223: ≤ 20 K
Coated conductors (RE-123): ≤ 50 K

• Higher temperatures:
Coated conductors (RE-123) ~ 65 -77 K
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Production of 14 MeV neutrons – deposition of energy in the “first wall” 
substantial material problems (~1 MW/m²)!

At the magnet location: Attenuation by a factor of ~ 106. Scattering processes 
lead to a “thermalization” of the neutrons!

The lifetime fluence of the ITER magnets amounts to 1 x 1022 m-2 (E > 0.1 MeV)

NEUTRON SPECTRA
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DAMAGE ENERGY SCALING

(E) neutron cross section
T(E) primary recoil energy distribution
F(E) neutron flux density distribution
t irradiation time in the neutron spectrum F(E)


< (E) . T(E) > displacement energy cross section

ED = < (E) . T(E) > . F(E) . t damage energy (total energy transferred to each 
atom in the material)

SUCCESSFUL SCALING OF Tc AND Jc IN METALLIC SUPERCONDUCTORS


PREDICTIONS OF PROPERTY CHANGES IN AN UNAVAILABLE NEUTRON 
SPECTRUM ARE FEASIBLE!
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DAMAGE PRODUCTION in SUPERCONDUCTORS

FAST NEUTRONS (E > 0.1 MeV)

Displacement cascade initiated by the primary knock-on atom, if 
its energy exceeds 1 keV

EPITHERMAL NEUTRONS (1 – 100 keV)

Point defect clusters

THERMAL NEUTRONS

Transmutations, point defects

-rays: No influence

HTS: Fast neutrons produce stable collision cascades because of 
their low conductivity
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FAST NEUTRONS (E>0.1 MeV)

COLLISION CASCADES,
IF THE ENERGY OF THE 

PRIMARY KNOCK-ON 
ATOM EXCEEDS 
 1 keV

 
 

STATISTICALLY DISTRIBUTED 
 

~ SPHERICAL, ~ 2.5 nm Ø 
 

SURROUNDED BY A STRAIN FIELD 
OF THE SAME SIZE 

 
5 x 1022 defects m-3 per 1022 neutrons m-2 

 

 

Neutron-induced Defects in HTS

M. Frischherz et al.: Physica C 232, 309 (1994)
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YBa2Cu3O7- - Y-123
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CONSEQUENCES FOR THE PRIMARY SUPERCONDUCTIVE PROPERTIES:

Introduction of disorder – mainly O-displacements
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F.M. Sauerzopf: PRB 57, 10959 (1998)M. Eisterer et al.: Adv. Cryog. Eng. 46, 655 (2000)
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H || c

H || a,b

Consequences for flux pinning
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M. Kraus et al.: Phys. Bl. 50, 333 (1994)

The same defects act differently in different materials

Example: parallel columnar defects
c-axis

Y-123 (“3D”): Peak for H parallel to columns

Bi-2212 (“2D”): Reduction of Jc anisotropy
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Experimental Jc data
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F.M. Sauerzopf: PRB 57, 10959 (1998)
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Connolly et al., TU-Delft 2000

Model defects in “2D” Bi-2223 tapes
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Y-123: Similar behavior of fission tracks 
and collision cascades

M. Eisterer et al.: SUST 11, 1001 (1998)
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• “3D” HTS:

Strong pinning of flux 
lines for H || c

Reduced intrinsic pinning 
through disorder (H || a,b)

• “2D” HTS:

Pinning of a few individual 
pancakes
Reduced intrinsic pinning 
through disorder (H || a,b)

SUMMARY: NEUTRON - INDUCED DEFECTS
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1) MgB2 (Tc ~ 39 K)
Low temperature (5 – 10 K) and intermediate field (< 10 T) application (PF)

2) Bi-2212 (Tc ~ 87 K)
ITER like fields up to 25 K (intrinsic limit)

3) Bi-2223 (Tc ~ 110 K) – 1G conductors  are now being replaced by RE-
123 coated (2G) conductors
ITER like fields up to 30 K (intrinsic limit) 

4) RE-123 (Tc ~ 92 K)
ITER like fields up to 60 K, higher T operation possible

PRACTICAL MATERIALS

4 HTS compounds suitable for fusion applications

Magnetic field applications at T > 50 K only with RE-123 HTS compounds
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Pure MgB2 is anisotropic:  = Hc2
ab/Hc2

c  ~ 5

Grains are randomly oriented: 

different upper critical fields in different grains!

Distribution function:
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“Irreversibility line” can be shifted by an increase of Bc2 and / or by a reduction 
of the anisotropy: 

Neutron irradiation increases Bc2 and decreases .
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Neutron irradiation: 

Bc2 ↑                 B=0 ↑                 Jc(B) ↑ at high magnetic fields
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Introduction of defect cascades is less important, grain boundary pinning is dominant !

M. Eisterer et al.: SUST 15, 1088 (2002) 
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M. Eisterer et al.: Phys. Rev. Lett. 90, 247002 (2003)
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EXTRAPOLATED PERFORMANCE at 4.2 K
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Coated conductors

Focus on commercial tapes
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Microstructure

Key elements:

• Jc
GB (grain boundaries – inter-grain 

currents)
– relevant at small fields
– grain boundary angle
– doping

• Jc
G (grains – intra-grain currents)

– relevant at high fields
– pinning centres

• Jc vs. field orientation

• Homogeneity along (long) lengths

current



LOW TEMPERATURE PHYSICS

Irreversibility Lines
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AMSC 5.6 T

Bruker 7.7 T

Sumitomo 1.15 T
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Neutron irradiation

• Jc
intra: improved

• Jc
inter: degraded
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Neutron irradiation effects on Jc for H parallel c: 
Bruker HTS
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Neutron irradiation effects on Jc anisotropy: AMSC

• Reduced critical currents for fields 
parallel a,b

• Improved critical currents for fields 
parallel c

• At higher neutron fluence:  second 
peak
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Summary: Critical Current Densities (JC)
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• The ellipses represent possible design requirements for fusion magnets (ITER 
specification). A field of around 6 T is specified for the ITER PF coils and of around 
13 T for the CS/TF coils.

• The range of current densities between 108 Am-2 and 1010 Am-2  is highlighted.

H||a,b H||c
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The engineering critical current densities JE need to be improved!
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… but alternative materials exist … RE-123 (RE = Nd, Sm, Gd)

Higher Tc                       →             Higher irreversibility fields at 77 K

M. Eisterer et al.: Adv. Cryog. Eng. 46, 655 (2000) R. Fuger et al.: Physica C 470, 323 (2010)



LOW TEMPERATURE PHYSICS

… and new commercial cc’s, partly with artificial pinning centers

intrinsic pinning

correlated pinning

shoulders
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… but we need

cables with highly demanding performance at high fields and temperatures

 high amperage (some 10 kA)

 long lengths

 high homogeneity

 low Jc anisotropy

 low ac losses

 high stress tolerance

e.g. Roebel cables or striated conductors
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Homogeneity of cables or striated tapes (magnetoscan analysis)

• Homogeneity of the cable
• Identify damage of single strands

Striated tape
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CONCLUSIONS

• Cc‘s are close to the field requirements of ITER / DEMO magnets at elevated 
temperatures

• Neutron irradiation is beneficial as long as Tc is not too much depressed ()

• Neutron irradiation reduces the Jc anisotropy (may not be so important – AP’s!)

but

• Cable development is needed

• Y-substitution may be advisable

• Neutron irradiation to higher fluences is required

• Homogeneity issues must be carefully addressed

and

• all the other issues discussed at this conference must be solved!!
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