RADIATION EFFECTS ON HIGH TEMPERATURE SUPERCONDUCTORS

Harald W. Weber

Atominstitut, Vienna University of Technology

Vienna, Austria

From ITER to DEMO

Neutron Spectra

Neutron-induced Defects in HTS

Practical Materials

HTS⁴Fusion Conductor Workshop, KIT, 27 May 2011

From ITER to DEMO

- The cooling power could be significantly reduced.
- The radiation shields could be significantly reduced and simplified.
- Higher magnetic fields could be achievable.
- Smaller coil geometries would become feasible.
- Could He be replaced?

Options / Materials

"Demo" design (magnetic field, temperature, fluence)

• Cheaper: MgB₂

- Higher fields: HTS

 Bi-2212: ≤ 10 K
 Bi-2223: ≤ 20 K
 Coated conductors (RE-123): ≤ 50 K
- Higher temperatures:

Coated conductors (RE-123) ~ 65 -77 K

NEUTRON SPECTRA

Production of 14 MeV neutrons – deposition of energy in the "first wall" \rightarrow substantial material problems (~1 MW/m²)!

At the magnet location: **Attenuation by a factor of ~ 10⁶.** Scattering processes lead to a "thermalization" of the neutrons!

The lifetime fluence of the ITER magnets amounts to 1 x 10²² m⁻² (E > 0.1 MeV)

DAMAGE ENERGY SCALING

σ(E) T(E)	neutron cross section
F(E) t	neutron flux density distribution irradiation time in the neutron spectrum F(E)
$< \sigma(E) . T(E) >$ displacement energy cross section	

 $E_D = \langle \sigma(E) . T(E) \rangle . F(E) . t$ damage energy (total energy transferred to each atom in the material)

SUCCESSFUL SCALING OF T_c AND J_c IN METALLIC SUPERCONDUCTORS \Rightarrow

PREDICTIONS OF PROPERTY CHANGES IN AN UNAVAILABLE NEUTRON SPECTRUM ARE FEASIBLE!

⇒

DAMAGE PRODUCTION in SUPERCONDUCTORS

FAST NEUTRONS (E > 0.1 MeV)

Displacement cascade initiated by the primary knock-on atom, if its energy exceeds 1 keV

EPITHERMAL NEUTRONS (1 – 100 keV)

Point defect clusters

THERMAL NEUTRONS

Transmutations, point defects

 γ -rays: No influence

HTS: Fast neutrons produce stable collision cascades because of their low conductivity

Neutron-induced Defects in HTS

FAST NEUTRONS (E>0.1 MeV)

COLLISION CASCADES, IF THE ENERGY OF THE PRIMARY KNOCK-ON ATOM EXCEEDS ~ 1 keV

M. Frischherz et al.: Physica C 232, 309 (1994)

YBa₂Cu₃O_{7-δ} - Y-123

 $Bi_2Sr_2Ca_2Cu_3O_{10}$ - Bi-2223

CONSEQUENCES FOR THE PRIMARY SUPERCONDUCTIVE PROPERTIES:

Introduction of disorder – mainly O-displacements

M. Eisterer et al.: Adv. Cryog. Eng. 46, 655 (2000)

F.M. Sauerzopf: PRB 57, 10959 (1998)

The same defects act differently in different materials Example: parallel columnar defects

¢c-axis

Y-123 ("3D"): Peak for H parallel to columns Bi-2212 ("2D"): Reduction of J_c anisotropy

M. Kraus et al.: Phys. Bl. 50, 333 (1994)

Experimental J_c data

Model defects in "2D" Bi-2223 tapes

Connolly et al., TU-Delft 2000

Critical Currents at 77 K

S. Tönies et al.: IEEE Trans. Appl. Supercond. 11, 3904 (2001)

Irreversibility Lines

Y-123: Similar behavior of fission tracks and collision cascades

M. Eisterer et al.: SUST 11, 1001 (1998)

SUMMARY: NEUTRON - INDUCED DEFECTS

- "3D" HTS:
- Strong pinning of flux lines for H || c
- Reduced intrinsic pinning through disorder (H || a,b)
- "2D" HTS:
- Pinning of a few individual pancakes
- Reduced intrinsic pinning through disorder (H || a,b)

PRACTICAL MATERIALS

4 HTS compounds suitable for fusion applications

- MgB₂ (T_c ~ 39 K) Low temperature (5 – 10 K) and intermediate field (< 10 T) application (PF)
- 2) Bi-2212 ($T_c \sim 87$ K) ITER like fields up to 25 K (intrinsic limit)
- 3) Bi-2223 (T_c ~ 110 K) 1G conductors \rightarrow are now being replaced by RE-123 coated (2G) conductors ITER like fields up to 30 K (intrinsic limit)
- **RE-123 (T_c ~ 92 K)** ITER like fields up to 60 K, higher T operation possible

Magnetic field applications at T > 50 K only with RE-123 HTS compounds

MgB₂ Wires

Pure MgB₂ is anisotropic: $\gamma = H_{c2}^{ab}/H_{c2}^{c} \sim 5$

Grains are randomly oriented:

different upper critical fields in different grains! **Distribution function**:

"Irreversibility line" can be shifted by an increase of B_{c2} and / or by a reduction of the anisotropy:

$$B_{\rho=0} = \frac{1}{\sqrt{(\gamma^2 - 1)p_c^2 + 1}} B_{c2}^{ab}$$

M. Eisterer et al.: JAP 98, 033960 (2003)

Neutron irradiation increases B_{c2} and decreases γ .

Neutron irradiation:

 B_{c2} \uparrow \implies $B_{\rho=0}$ \uparrow \implies $J_c(B)$ \uparrow at high magnetic fields

Introduction of defect cascades is less important, grain boundary pinning is dominant !

M. Eisterer et al.: SUST 15, 1088 (2002)

Critical currents can be fully explained by a percolation model (solid lines)

M. Eisterer et al.: Phys. Rev. Lett. 90, 247002 (2003)

EXTRAPOLATED PERFORMANCE at 4.2 K

Coated conductors

Focus on commercial tapes

Microstructure

Key elements:

- J_c^{GB} (grain boundaries inter-grain currents)
 - relevant at small fields
 - grain boundary angle
 - doping
- J_c^G (grains intra-grain currents)
 - relevant at high fields
 - pinning centres
- J_c vs. field orientation
- Homogeneity along (long) lengths

Irreversibility Lines

Neutron irradiation

• J_c^{inter}: degraded

Neutron irradiation effects on J_c for H parallel c: Bruker HTS

Neutron irradiation effects on J_c anisotropy: AMSC

- Reduced critical currents for fields
 parallel a,b
- Improved critical currents for fields
 parallel c
- At higher neutron fluence: second peak

Summary: Critical Current Densities (J_c)

- The ellipses represent possible design requirements for fusion magnets (ITER specification). A field of around 6 T is specified for the ITER PF coils and of around 13 T for the CS/TF coils.
- The range of current densities between 10⁸ Am⁻² and 10¹⁰ Am⁻² is highlighted.

The engineering critical current densities J_E need to be improved!

... but alternative materials exist ... RE-123 (RE = Nd, Sm, Gd)

Higher T_c

 \rightarrow

Higher irreversibility fields at 77 K

M. Eisterer et al.: Adv. Cryog. Eng. 46, 655 (2000)

R. Fuger et al.: Physica C 470, 323 (2010)

... and new commercial cc's, partly with artificial pinning centers

... but we need

cables with highly demanding performance at high fields and temperatures

- ▷ high amperage (some 10 kA)
- Iong lengths
- ➢ high homogeneity
- \boxtimes low J_c anisotropy
- \boxtimes low ac losses
- ➢ high stress tolerance

e.g. Roebel cables or striated conductors

Homogeneity of cables or striated tapes (magnetoscan analysis)

f=175.75Hz

CONCLUSIONS

- Cc's are *close to* the field requirements of ITER / DEMO magnets at elevated temperatures
- Neutron irradiation is beneficial as long as $T_{\rm c}$ is not too much depressed (\checkmark)
- Neutron irradiation reduces the J_c anisotropy (may not be so important AP's!)

but

- Cable development is needed
- Y-substitution may be advisable
- Neutron irradiation to higher fluences is required
- Homogeneity issues must be carefully addressed

and

• all the other issues discussed at this conference must be solved!!

CO-WORKERS and COLLABORATIONS

CO-WORKERS at ATI

Michael Eisterer René Fuger Florian Hengstberger Martin Zehetmayer Johann Emhofer Michal Chudy

COLLABORATIONS

SuperPower / University of Houston: V. Selvamanickam American Superconductor: A. Malozemoff Bruker HTS: A. Usoskin Industrial Research: N. Long Hypertech: M. Sumption Sumitomo Electric Industries: K. Sato FZ Karlsruhe: W. Goldacker

