

Thermo-Mechanical Analysis of ISIS TS2

Spallation Target

Dan Wilcox

High Power Targets Group, Rutherford Appleton Laboratory

5th High Power Targetry Workshop, Fermilab

21/05/2014

ISIS Overview

Synchrotron

- 800MeV proton energy
- 200µA beam current (160kW power)
- Pulses at 50Hz

Target Station 1

- Receives 4 of every 5 beam pulses (40Hz)
- 160µA beam current (128kW power)
- Target: tungsten plates

Target Station 2

- Receives 1 of every 5 beam pulses (10Hz)
- 40µA beam current (32kW power)
- Target: solid tungsten rod

Background

- Aim: model the operating condition of the current ISIS TS2 target
 - Identify factors limiting target lifetime
 - Mk II target had to be replaced after radioactive material (thought to be tungsten) was detected in the cooling water
 - Inform design of future targets, e.g. TS1 upgrade

Overview of Beam-Induced Stresses

Time

Image credit: Peter Loveridge, HPTG

Modelling Beam Stresses

- Steady State and Transient
 - Full 3D geometry
 - Conjugate heat transfer for steady state
 - HTC assumed constant during transient model
 - Thermal results input to structural model
- Stress waves
 - 2D model in ANSYS Classic, many time steps required
 - Inertia effects included (dynamic stress response)

Summary of Stress Results at the Target Nose

Pre-Stress: the HIP Process

- Hot Isostatic Press (HIP) used to diffusion bond tantalum to tungsten
 - Tungsten core sealed inside tantalum 'can'
 - Assembly heated to ≈1200°C
 - Pressure of ≈140MPa applied to force parts together until they bond
 - Gradually returned to room temperature and pressure, then machined to final size
- Results in significant pre-stress
 - High pressure deforms tantalum can, but this occurs above annealing temperature
 - Cooling causes shrink-fit residual stress (tantalum contracts more than tungsten)
 - Stresses thought to 'lock in' at around 500°C
 - Heating in an impure environment will affect material properties getter foils will reduce but not eliminate this

Components of HIP assembly

Including Plasticity

- Bilinear material model applied for tantalum
- 'Kinematic Hardening' behaviour selected
 - An increase in yield stress in one direction is compensated for by a decrease in yield strength in the opposite sense (Bauschinger effect)
 - The total linear stress range is equal to twice the yield stress

ANSYS material property "Bilinear Kinematic Hardening"

Kinematic Hardening Model

Combined Pre-Stress and Beam Heating

- 3D geometry in ANSYS Mechanical target core only
- Stress wave effects were not included
- Assuming HIP does not affect heat transfer properties, thermal results do not change
- Static structural model with multiple load steps:
 - 1. The model starts in an unstressed state at 500°C
 - 2. A body temperature of 20°C is applied resulting in HIP stress
 - 3. The model is heated to the steady state temperature
 - 4. Two beam pulses are applied

Combined Pre-Stress and Beam Heating

Stress and strain components at the target nose

Steady State Results with Pre-Stress

Von Mises Stress in Tantalum

Geometry features around cladding front end

Areas of maximum steady state plastic strain

Steady State Plastic Strain

In cladding tube: Elastic strain = 0.0011 Plastic strain = 0.0017 Total strain = 0.0028 (0.28%)

- Not enough to cause structural failure

Tensile test data for post-HIP Tantalum, carried out by Eamonn Quinn of ISIS

Combined Pre-Stress and Beam Heating

Stress and strain components at the target nose

Strain Components During Pulsed Operation

Elastic Strain

Plastic Strain

Transient Model with Pre-Stress and Bilinear Materials

Stress/strain plot at the target nose

Comparison of Cladding Tube and Target Nose

Fatigue Analysis

- ISIS beam data suggests there are 0.6 beam trips per hour, or one trip every 60000 pulses
 - Number per year estimated based on frequency and average facility uptime

Load Case	Beam Pulse	Beam Trip
Frequency [Hz]	10	0.00017
Number Per Year	134,000,000	2230

- Stress waves ignored material response is different on microsecond timescales
- Based on a simple total-life approach
 - Assumes an initially uncracked surface
 - Stress-life (high-cycle) fatigue

- Stress amplitudes are low, but average stresses are very high
 - Use a constant life diagram to see if this will be a problem

Constant Life Diagram

Mean stress = yield stress – $\Delta\sigma/2$

Fatigue Analysis - Limitations

- Difficult to draw conclusions due to lack of material property data
 - No data could be found for tantalum fatigue
 - Very limited irradiation data
 - What will happen to HIPed, yielded, irradiated tantalum under periodic loading?
- The effect of stress waves is still unknown
- Are we including plastic effects in the right way?
- Stress concentration on cladding tube

ISIS target cut up at FZ-Juelich

Specimen from STIP-II at PSI

Neutron irradiated specimen from HFIR at ORNL

Conclusions on TS2 Target

- HIP pre-stress looks like the most significant stress component
 - This will be validated against experiments on the ISIS instrument Engin-X, data analysis is currently underway
- Current theory is that fatigue failure of tantalum cladding will be the limiting factor of target lifetime
 - Tensile pre-stress and radiation embrittlement will make the fatigue situation worse
 - Irradiation creep and stress relaxation may reduce the average stress?
 - TS1 has much lower periodic loading, and has proven very reliable
 - Stress concentration on cladding tube will be removed on future targets
- Beam accident case is another possible explanation
 - Current instrumentation will not immediately detect an over-focused beam
 - Thought to be more of a risk for TS1 than TS2
- Understanding is limited by availability of material property data
 - There are spent ISIS targets available for PIE

Relevance to TS1 Upgrade

- Aim: Design a target which combines the neutronic performance of TS2 and the reliability of TS1
 - Designed in collaboration with ISIS Neutronics and ISIS Target Engineering
- Reliability is the top priority
- Neutronic optimisation goals include thinner cladding and fewer plates
 - Difficult to set material limits without fully understanding the operating condition of current targets
 - Better understanding of current target issues will ultimately allow for more highly optimised targets in future

