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Synchrotron

e 800MeV proton energy

ISIS Overview

e 200pA beam current (160kW power)

e Pulses at 50Hz
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 Receives 4 of every 5 beam pulses (40Hz) vy
e 160pA beam current (128kW power)

e Target: tungsten plates

Target Station 2

e Receives 1 of every 5 beam pulses (10Hz)

Target Station 2
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e 40pA beam current (32kW power)
e Target: solid tungsten rod
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Background

 Aim: model the operating condition of the current ISIS TS2 target

— Identify factors limiting target lifetime

— Mk Il target had to be replaced after radioactive material (thought to be tungsten) was
detected in the cooling water

— Inform design of future targets, e.g. TS1 upgrade &
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Stress

Overview of Beam-Induced Stresses

- Must also consider pre-stress from
manufacturing methods
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Modelling Beam Stresses

e Steady State and Transient
— Full 3D geometry

— Conjugate heat transfer for steady state
— HTC assumed constant during transient model

— Thermal results input to structural model
e Stress waves

— 2D model in ANSYS Classic, many time steps required

— Inertia effects included (dynamic stress response) R e L e

Dynamic Stress in the Nose of the ISIS 2nd Target
(100 nsec spill, 300 nsec gap, 100 nsec spill)
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Stress

Summary of Stress Results at the Target Nose

W ~ 30 MPa

Ta ~ 12 MPa ‘stress-waves’ I

many seconds to reach
quasl steady-state
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~10 Yield Stresses
psec W Yield = 550 MPa
—_—

Ta Yield =~ 160 MPa

' i W ~ 30 + 19 + 157 = 206 MPa
Ta~12+10+90 =112 MPa

“transient’ W~ 19 MPa
stress Ta ~ 10 MPa

‘steady-state’ w ~ 157 MPa
stress Ta ~ 90 MPa




Pre-Stress: the HIP Process

Hot Isostatic Press (HIP) used to diffusion bond tantalum to tungsten
— Tungsten core sealed inside tantalum ‘can’
— Assembly heated to =1200°C
— Pressure of =140MPa applied to force parts together until they bond
— Gradually returned to room temperature and pressure, then machined to final size

Results in significant pre-stress
— High pressure deforms tantalum can, but this occurs above annealing temperature
— Cooling causes shrink-fit residual stress (tantalum contracts more than tungsten)
— Stresses thought to ‘lock in” at around 500°C
— Heating in an impure environment will affect material properties — getter foils will
reduce but not eliminate this

Tantalum , Tantalum Tube
Flange

Tantalum

- '/ Front Cap

Components of HIP assembly

Tungsten Core /



Including Plasticity

e Bilinear material model applied for tantalum
 ‘Kinematic Hardening’ behaviour selected

— Anincrease in yield stress in one direction is compensated for by a decrease in yield
strength in the opposite sense (Bauschinger effect)

— The total linear stress range is equal to twice the yield stress

Tangent modulus = 1GPa

Bilinzar Kinematic Hardening y

Cd

;"FYieId Stress = 200MPa

1.5

Stress (.10% [Pa]
N
Q

0.5 1

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005
Strain [mm™-1]

ANSYS material property “Bilinear Kinematic Hardening” Kinematic Hardening Model



Combined Pre-Stress and Beam Heating

3D geometry in ANSYS Mechanical — target core only

Stress wave effects were not included

Assuming HIP does not affect heat transfer properties, thermal results do not change

Static structural model with multiple load steps:

1. The model starts in an unstressed state at 500°C

2. A body temperature of 20°C is applied — resulting in HIP stress

3. The model is heated to the steady state temperature

4. Two beam pulses are applied
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Steady State Results with Pre-Stress
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Steady State Plastic Strain

In cladding tube: / |
Elastic strain = 0.0011 / |
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Strain
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Von Mises Stress (MPa)

Transient Model with Pre-Stress and Bilinear Materials
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Total Strain ()

Comparison of Cladding Tube and Target Nose
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Fatigue Analysis

e |ISIS beam data suggests there are 0.6 beam trips per hour, or one trip every
60000 pulses

Number per year estimated based on frequency and average facility uptime

Load Case Beam Pulse Beam Trip
Frequency [Hz] 10 0.00017
Number Per Year 134,000,000 2230

e Stress waves ignored - material response is different on microsecond

timescales

 Based on a simple total-life approach
— Assumes an initially uncracked surface —————

— Stress-life (high-cycle) fatigue et R

tress wmplivude, i,
#

e Stress amplitudes are low, but average stresses are very high

Use a constant life diagram to see if this will be a problem



Constant Life Diagram
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Fatigue Analysis - Limitations

Difficult to draw conclusions due to lack of material property data
— No data could be found for tantalum fatigue
— Very limited irradiation data
— What will happen to HIPed, yielded, irradiated tantalum under periodic loading?

The effect of stress waves is still unknown
Are we including plastic effects in the right way?
Stress concentration on cladding tube
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Conclusions on TS2 Target

HIP pre-stress looks like the most significant stress component

This will be validated against experiments on the ISIS instrument Engin-X, data analysis is
currently underway

Current theory is that fatigue failure of tantalum cladding will be the
limiting factor of target lifetime

Tensile pre-stress and radiation embrittlement will make the fatigue situation worse
Irradiation creep and stress relaxation may reduce the average stress?

TS1 has much lower periodic loading, and has proven very reliable

Stress concentration on cladding tube will be removed on future targets

Beam accident case is another possible explanation

Current instrumentation will not immediately detect an over-focused beam
Thought to be more of a risk for TS1 than TS2

Understanding is limited by availability of material property data
— There are spent ISIS targets available for PIE



Relevance to TS1 Upgrade

 Aim: Design a target which combines the neutronic performance of TS2 and
the reliability of TS1

— Designed in collaboration with ISIS Neutronics and ISIS Target Engineering
e Reliability is the top priority

 Neutronic optimisation goals include thinner cladding and fewer plates

— Difficult to set material limits without fully understanding the operating condition of
current targets

— Better understanding of current target issues will ultimately allow for more highly
optimised targets in future




