Mathematical Model Analysis for Hg Flow

Yan Zhan SUNYSB

April 20th, 2010

Outline

• Introduction

- Mechanism of Jet Breakup & Atomization
- Dynamic Problems in Hg Target Flow
- Mathematical Model for Hg Flow
 - Parameters
 - Incompressible Flow (No MHD)
 - Incompressible Flow (MHD)
 - Proton Beam Energy Conversion
 - Boundary Condition Discussion
- Equation of State

Introduction

Neutrino Factory/Muon Collider

The shape of the jet is important!

K.T. McDonald, "The R&D Program for target and capture at a Neutrino Factory and Muon Collider Source", NF&MCC Technical Board Meeting, LBL, Oct.3, 2000

Introduction—Mechanism of Jet Breakup & Atomization

R.D. Reitz and F.V. Bracco, Mechanism of atomization of a liquid jet, Phys. Fluids, Vol.25, No.10, Oct.1982

Introduction—Dynamic Problems in Hg Target Flow

• Internal Flow

- Dynamics of MHD pipe flow
- The influence of nozzle design on jet exit conditions
- Jet
 - Dynamics of free jet under MHD & energy deposition
 - Jet breakup & instability mechanism and the effects of MHD & energy deposition
 - Comparison with known classical free jet dynamics
 - Inlet conditions to the Dump

Mathematical Model for Hg Flow — Parameters (1)

Mercury Properties (25 °C)		Variable Values	
Density	13.546 kg/L	Velocity in Pipe	3.4 m/s
Sound Speed	1451 m/s	Beam Energy	24 GeV
Viscosity	1.526E-3 kg/s·m	Beam Intensity	10 TP
Dynamic Viscosity	1.127 m^2/s	Beam Pulse Length	2 ns
Thermal Conductivity	8.69 W/m·K	Magnetic Strength	20 Tesla
Electrical Conductivity	1E6 Siemens/m	Pipe Diameter	2.54 cm (1")
Specific Heat	0.139 J/kg·K	Jet Diameter	1 cm
Prandtl Number	0.025	Beam Diameter	0.15 cm RM
Surface Tension	465 dyne/cm	Static Pressure inside Pipe	18.5 Bar (kF
Permeability	4*PI*1E-7	Dynamic Pressure inside Pipe	e 0.7 Bar (kPa
		Air Density Outside Jet	0.0013 kg/L

Jet Tilts w.r.t. Magnetic Axis

Beam Tilts w.r.t. Magnetic Axis

33 mrad

67 mrad

Mathematical Model for Hg Flow — Parameters (2)

 $R_{e_{pipe}} = \frac{\rho v_{pipe} d_{pipe}}{\mu} = \frac{13.6 \times 10^3 \times 20 \times 0.0254}{1.5 \times 10^{-3}} = 7.666 \times 10^5$ $R_{e_{mag,pipe}} = \beta v_{jet} d_{jet} \sigma_{Hg} = 4 \times \pi \times 10^{-7} \times 3.4 \times 0.0254 \times 1 \times 10^{6} = 0.108$ $M_{a_{pipe}} = \frac{v_{pipe}}{v_{sound}} = \frac{3.4}{1451} = 2.343 \times 10^{-3}$ $R_{e_{jet}} = \frac{\rho v_{jet} d_{jet}}{\mu} = \frac{13.6 \times 10^3 \times 20 \times 0.01}{1.5 \times 10^{-3}} = 1.8 \times 10^6$ $R_{e_{mag,jet}} = \beta v_{jet} d_{jet} \sigma_{Hg} = 4 \times \pi \times 10^{-7} \times 20 \times 0.01 \times 1 \times 10^{6} = 0.2512$ $M_{a_{jet}} = \frac{v_{jet}}{v_{sound}} = \frac{20}{1451} = 0.014$ $W_{e_{jet}} = \frac{\rho d_{jet} v_{jet}^2}{\tau} = \frac{13.6 \times 10^3 \times 0.01 \times 20^2}{465 \times 10^{-3}} = 115000$ Small Ma **——** Incompressible

Re* for Curved Pipe? Re* effected by B Field? Turbulence ? (Re* for Curved Tube is Larger than Straight Pipe*)

Mathematical Model for Hg Flow — Incompressible Flow (No MHD)

Governing Equations

$$\nabla \cdot \vec{V} = 0$$

$$\rho \left(\frac{\partial \vec{V}}{\partial t} + \vec{V} \cdot \nabla \vec{V} \right) = -\nabla P + \mu \nabla^2 \vec{V} + \rho \vec{g}$$

$$\rho C_p \frac{dT}{dt} = \frac{DP}{Dt} + \nabla \cdot (k \nabla T) + \Phi$$
Where $\Phi = \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$

Nondimensional Governing Equations

$$\begin{split} \nabla^* \cdot \vec{V}^* &= 0\\ \rho^* \frac{D\vec{V}^*}{Dt^*} &= -\nabla^* P^* + \frac{1}{Re} \nabla^* \cdot \left(\frac{\partial u_i^*}{\partial x_j^*} + \frac{\partial u_j^*}{\partial x_i^*}\right) + \frac{1}{Fr} \rho\\ \rho^* \frac{DT^*}{Dt^*} &= Ec \frac{DP^*}{Dt^*} + \frac{1}{PrRe} \nabla^* \cdot (\mathbf{k}^* \nabla^* T^*) + \frac{E_c}{R_e} \Phi^* \end{split}$$

$$V, r, t, \rho, P, \mu, g, C_p, \Phi, T, k (11)$$

$$d_0, V_0, \rho_0, \mu_0, g, C_p, \Delta T (7)$$

$$R_e, Fr, Ec, Pr(4)$$

Reynolds Number $R_e = \frac{\rho_0 V_0 d_0}{\mu_0}$ Magnetic Reynolds Number $Re_{mag} = \beta_0 V$ Froude Number $Fr = \frac{V_0}{\sqrt{d_0 g}}$ Eckert Number $Ec = \frac{V_0^2}{c_p \Delta T} = (\gamma - 1)Ma^2$ Mach Number $M_a = \frac{V_0}{c}$ Prandtl Number $Pr = \frac{\mu_0}{\rho_0 k_0}$ **Magnetic Reynolds Number** $Re_{mag} = \beta_0 V_0 d_0 \sigma_0$

Mathematical Model for Hg Flow — Incompressible Flow (MHD)

Governing Equations

$$\begin{aligned} \nabla \cdot \vec{V} &= 0 \\ \rho \left(\frac{\partial \vec{V}}{\partial t} + \vec{V} \cdot \nabla \vec{V} \right) &= -\nabla P + \mu \nabla^2 \vec{V} + \rho \vec{g} + \vec{I} \times \vec{B} \end{aligned} \ \begin{array}{l} \text{Lorentz Force} \\ \rho C_p \frac{DT}{Dt} &= \frac{DP}{Dt} + \nabla \cdot (k \nabla T) + \Phi + \frac{1}{\sigma} \vec{J}^2 \\ \frac{\partial \vec{B}}{\partial t} &= \nabla \times \left(\vec{V} \times \vec{B} \right) - \nabla \times \left(\frac{c^2}{4\pi\sigma} \nabla \times \vec{B} \right) \\ \vec{J} &= \frac{c}{4\pi\beta} \nabla \times \vec{B} \\ \nabla \cdot \vec{B} &= 0 \end{aligned}$$

Nondimensional Governing Equations

$$\begin{split} \nabla^* \cdot \vec{V}^* &= 0 \\ \rho^* \frac{D\vec{V}^*}{Dt^*} &= -\nabla^* P^* + \frac{1}{Re} \nabla^* \cdot \left(\frac{\partial u_i^*}{\partial x_j^*} + \frac{\partial u_j^*}{\partial x_i^*} \right) + \vec{J}^* \times \vec{B}^* + \frac{1}{Fr} \rho^* \\ \rho^* \frac{DT^*}{Dt^*} &= Ec \frac{DP^*}{Dt^*} + \frac{1}{PrRe} \nabla^* \cdot (k^* \nabla^* T^*) + \frac{E_c}{R_e} \Phi^* + \frac{R_e^2 E_c}{R_{emag}} \vec{J}^{*2} \\ \frac{\partial \vec{B}^*}{\partial t} &= \nabla^* \times \left(\vec{V}^* \times \vec{B}^* \right) - \frac{1}{Re_{mag}} \nabla^{*2} \vec{B}^*) \\ \vec{J}^* &= \frac{c}{4\pi} \frac{1}{Re} \nabla^* \times \vec{B}^* \\ \nabla^* \cdot \vec{B}^* &= 0 \end{split}$$

Mathematical Model for Hg Flow — Proton Beam Energy Conversion

• Assume as a δ function (A. Hassanein)

 $E_{pulse}(r,t) = q_b \delta(t-t_b) = q_0 exp(-(r/r_b)^2)\delta(t-t_b)$ where $q_0 = \frac{Q_b}{\pi r_b^2}$

• Instantaneous energy deposition (P. Sievers and P. Pugnat)

$$E \to \Delta T_0 \xrightarrow{P = \kappa \alpha_V \Delta T} P \xrightarrow{\frac{dE_c}{dV} = \frac{(\alpha_V \Delta T(r))^2}{2\kappa}} E_c \xrightarrow{\frac{\kappa (\alpha_V \Delta T)^2}{2} = \frac{\rho v^2}{2}} v$$

• 1D parabolic energy distribution of the beam long the propagation direction of the Hg flow. Sin^2 Envelop with τ =2ns pulse length (I.F. Barna et al.)

$$E_{pulse}(x,t) = E_0 sin^2 \left(\frac{\pi t}{\tau}\right) (1 - (x/x_s)^2)$$

- Monte Carlo Code (MARS, GRAN, FLUKA)
- Using Sergei's calculation for a 24-GeV, 10-TP proton beam (W.Bo, R. Samulyak)

Mathematical Model for Hg Flow — Boundary Conditions

Pipe Flow

- No slip at the pipe wall;
- Non-conducting wall;
- Velocity profile and initial values;
- Inlet and outlet pressure;
- Magnetic field profile;

Jet Flow

- The normal component of the velocity field is continuous across the interface;
- The pressure jump at the interface is defined by the surface tension τ and main radii of curvature:

$$\Delta P_{\Gamma} = \tau \left(\frac{1}{r_1} + \frac{1}{r_2}\right) \quad \Longrightarrow \quad p^* = \frac{1}{W_a} \frac{s^{*2} + 2s_{\theta^*}^{*2} - s^* s_{\theta^*\theta^*}^*}{(s^{*2} + s_{\theta^*}^{*2})^{3/2}}$$

• The normal component of the current density vanishes at the interface giving rise to the Neumann boundary condition for the electric potential:

$$\frac{\partial \varphi}{\partial \vec{n}_{\Gamma}} = \frac{1}{c} (\vec{V} + \vec{B}) \cdot \vec{n}$$

• Heat transfer balance at the free surface;

Next Step

- Study the energy deposition conversion for proton beam on jet to set up proper mathematical model for energy equation;
- Jet exit condition:
 - The influence of discontinuity boundary conditions transiting from pipe flow to jet flow;
 - Nozzle design on jet exit condition
- Dynamics of MHD on pipe flow

Equation of State (for compressible flow)

- Continuous Model
- Two Phase EOS
- Homogeneous Model
- Heterogeneous Model
- ISM Model
- SESAME Library
- Summation Method

Equation of State — Continuous Model

Continuous Model (David P. Schmidt)

$$p = p_l^{sat} + p_{gl} \cdot log \left[\frac{\rho_g \cdot a_g^2 \cdot \left(\rho_l + \alpha \cdot \left(\rho_g - \rho_l\right)\right)}{\rho_l \cdot \left(\rho_g \cdot a_g^2 - \alpha \cdot \left(\rho_g \cdot a_g^2 - \rho_l \cdot a_l^2\right)\right)} \right]$$
$$p_{gl} = \frac{\rho_g \cdot a_g^2 \cdot \rho_l \cdot a_l^2 \cdot \left(\rho_g - \rho_l\right)}{\rho_g^2 \cdot a_g^2 - \rho_l^2 \cdot a_l^2} \alpha = \frac{\rho - \rho_l}{\rho_g - \rho_l}$$

 a_g and a_l are the sound speeds of the pure phases. ω is zero in cartesian coordinates and unity in polar coordinates.

Equation of State — Two Phase Model

• Two Phase Model (I.F. Barna et al.)

Equation of State — Homogeneous Model

Homogeneous Model (Bruggeman)

Liquid/vapor mixture is treated as a pseudo-fluid that obeys an equation of state of a single component flow.

Conductivity of the mixed phase is calculated by

$$\sigma_m = \begin{cases} 0 & \text{if } 1 \ge \beta \ge \frac{2}{3} \\\\ \frac{1}{2}(2-3\beta) & \text{if } \beta \le \frac{2}{3} \end{cases}.$$

Equation of State — Heterogeneous Model

• Heterogeneous Model (Jian Du, Roman Samulyak)

- (1) Pure Vapor (Polytropic EOS): $P = (\gamma_v 1)E\rho$
- (2) Liquid (Stiffened Polytropic EOS):

Stiffened EOS Model (incompressible single Liquid Phase) $P + \gamma P_{\infty} = (\gamma - 1)\rho(\epsilon + E_{\infty})$ Adiabatic exponent γ =3.19; Stiffening constant P_{∞} =3000bar; Energy translation E_{∞} =4.85×10E4 erg/sgK

(3) Liquid-Vapor Mixture:

$$P = P_{sat,l} + P_{vl} \log \left[\frac{\rho_{sat,v} a_{sat,v}^2 (\rho_{sat,l} + \beta(\rho_{sat,v} - \rho_{sat,l}))}{\rho_{sat,l}(\rho_{sat,v} a_{sat,v}^2 - |\beta(\rho_{sat,v} a_{sat,v}^2 - \rho_{sat,l} a_{sat,l}^2))} \right]$$

Where $\beta = \frac{\rho - \rho_{sat,l}}{\rho_{sat,v} - \rho_{sat,l}}$
$$P_{vl} = \frac{\rho_{sat,v} a_{sat,v}^2 \rho_{sat,l} a_{sat,l}^2 (\rho_{sat,v} - \rho_{sat,l})}{\rho_{sat,v}^2 a_{sat,v}^2 - \rho_{sat,l}^2 a_{sat,l}^2}$$

Equation of State — ISM Model

• ISM Model (Ihm, Song, Mason)

$$\frac{P}{\rho kT} = 1 + \frac{(B-\alpha)\rho}{1+0.22\lambda b\rho} + \frac{\alpha\rho}{1-\lambda b\rho} \implies G(b\rho)^{-1} = \alpha\rho \left[Z - 1 + \frac{(\alpha - B)\rho}{1+0.22\lambda b\rho} \right]^{-1} = 1 - \lambda b\rho$$

Where

$$\begin{split} &B\rho_{\rm m} = 0.403891 - 0.076484 (\Delta H_{\rm vap}/RT)^2 - 0.0002504 (\Delta H_{\rm vap}/RT)^4 \\ &\alpha\rho_{\rm m} = a_1 \exp[-c_1(RT/\Delta H_{\rm vap})] + a_2\{1 - \exp[-c_2(\Delta H_{\rm vap}/RT)^{1/4}]\} \\ &b\rho_{\rm m} = a_1[1 - c_1(RT/\Delta H_{\rm vap})] \exp[-c_1(RT/\Delta H_{\rm vap})] \\ &+ a_2\{1 - [1 + 1/4c_2(\Delta H_{\rm vap}/RT)^{1/4}] \exp[-c_2(\Delta H_{\rm vap}/RT)^{1/4}]\} \\ &a_1 = -0.1053, \quad a_2 = 2.9359 \\ &c_1 = 5.7862, \qquad c_2 = 0.7966 \end{split}$$

Predict the density of Hg from the melting point up to 100 degree above the boiling Temperature.

Mathematical Model for Hg Flow — Equation of State(4)

SESAME Library

The SESAME opacity tables are compatible with the equation of state SESAME tables

Summation Method (Ahmed Hassanein)

Sum of cold compression, ion thermal, and electron thermal terms

$$\begin{split} E &= E_c + E_I + E_e \\ P &= P_c + P_I + P_e \end{split}$$

Where

$$\begin{split} E_{c}(\text{Energy of cold compression}): E_{c} &= E_{c0} \left[\left(\frac{\rho}{\rho_{0}} \right)^{\gamma-1} \right] \frac{\rho}{\rho_{0}} + P_{c0} (1 - \frac{\rho}{\rho_{0}}); E_{c0} = \frac{P_{c0}}{\gamma-1}; \\ P_{c}(\text{Pressure of cold compression}): P_{c} &= P_{c0} \left[\left(\frac{\rho}{\rho_{0}} \right)^{\gamma} - 1 \right]; P_{c0} = \frac{\rho c_{s}^{2}}{\gamma}; \\ E_{I}(\text{Ion thermal energy}): E_{I} &= 3nk(T - T_{0}); \\ P_{I}(\text{Ion thermal pressure}): P_{I} &= G_{I}E_{I}; \\ E_{e}(\text{Electron thermal energy}): E_{e} &= \frac{1}{2}\beta(T - T_{0})^{2}, \beta = \beta_{0} \left(\frac{\rho_{0}}{\rho} \right)^{2/3}; \\ P_{e}(\text{Electron thermal pressure}): P_{e} &= G_{e}E_{e}; \\ G_{I}, G_{e}: \text{ the Gruneisen coefficients for the ion and electron}; \\ C_{s}: \text{ the speed of sound in the liquid target;} \end{split}$$