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Hg supply piping in Muon Collider— Hg supply piping (1)

Hg supply flow path:

1-inch Sch 40 pipe (OD=1.315-inch, Wall thickness=0.133-inch)
1-inch flex metal hose w/sanitary fittings

1-inch, 0.065-wall rigid tubing

12mm-dia, Imm-wall rigid tubing



Hg supply piping in Muon Collider— Hg supply piping(1)
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Hg supply piping in Muon Collider— Hg supply piping(2)
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Hg supply piping in Muon Coll

ider— Hg supply piping(3)
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Hg supply piping in Muon Collider— Hg supply piping(4)
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Hg supply piping in Muon Collider— Hg supply piping(5)
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Hg supply piping in Muon Collider— Simplified simulation
model (1)

Is it necessary to simulate the whole pipe system?

Probably Not



Hg supply piping in Muon Collider— Simplified simulation
model (2)

Interests: Influence of nozzle & nozzle upstream on jet exit

Simulation Range




Hg supply piping in Muon Collider— Simplified simulation
model (3)

P..?

V. ?

Simulation Regime

® : 90-deg bend;
(©) : Nozzle



Hg supply piping in Muon Collider— Curved pipe flow regime (1)

Table 1 Parameters table

Pipe ID

Nozzle exit ID

Driving pressure
Frequency for Hg supply
Maximum Cycles

Jet Velocity

Jet Diameter

Jet Flow rate

Environment

Air Density Outside Jet

0.884 inch
0.402 inch
30 bar
12s

100

20 m/s
lcm

1.6 L/sec

1 atm air
/vacuum

0.0013kg/L

Table 2 Hg properties table

Density

Sound Speed

Bulk Modulus
Dynamic Viscosity
Thermal Conductivity
Electrical Conductivity
Specific Heat

Prandtl Number
Surface Tension

Permeability

13.546 kg/L
1451 m/s
2.67x10%%Pa
1.127 m?/s
8.69 W/m-K
108 Siemens/m
0.139 J/kg-K
0.025

465 dyne/cm
4*PI*1E-7



Hg supply piping in Muon Collider— Curved pipe flow regime (2)

flow rate ' V=3 . .
/4 x (0884 x 2 54 %107

Plippeope _ 13.546 x 10 x 0.884 x 2.54 x 1072 x 4.04
H 1.526 x 1072

- o Iyl 10 o
CHg = Y ﬁ_ = L0 — = 1400m/s
13.546 % 10

=8 05x%10°

Re;;gpg =

Hpipe _ 4.04
CHg 1400
. R, 1.1265

5, = Ko o L1265 5 g
“4 I pipe 0.442

Mtype = = (0.003 << 0.3

Dey = (264) " Reppe = (2% 2.86)7"7 x 8.05x 10° = 3.566 x 10°

The Hg flow inside the pipe is incompressible flow



Hg supply piping in Muon Collider— Curved pipe flow regime (3)

Flow type

Coordinate

Similarity Parameters

Transition to Turbulence

Straight
pipe flow

Cylindrical ir,z)

Reynolds Number
pliD pli?
Rep =- ==

U ull jD

Regeriy = 2000

Planar curved
pipe flow

Tarpidalir. b, 8)

Reynolds Number
Dean Mumber

o
.
.

L]
1

Where R, = R./D

(R/a=31.19)
Deprip = 3000

Helically
coiled
pipe flow

Reynolds Number
Dean Mumber

Germang Number
Gn = (D /2 THRey
Where 7is torsion

¥ = 7 15 important in determining
Dga = e

the flow response to torsion.

Unsteady
flow

Bt

Reduced Velocity

Wamersley Mumber
N

;
0T

Ueeg =

D

Wo =

ra|
S 1
=
3

") i VT
Where Tis the fundamental period of
the oscillatory flow
wRep
2 ii::.:

T —_
Uieg =

The Hg flow inside the pipe is turbulent flow




Hg supply piping in Muon Collider— Inlet pressure(1)

Pipe flow with fully developed velocity

Laminar velocity profiles
R? ¢ dP~py _ k2
4 dx L 7 ]

Canstant shape
cross section

U, (1) =

Turbulent velocity profiles

- | ‘R—w - SRR, . 1 av?* - 3 \
Uy = }T—szoll._f:7(h = 73 Tl_ll v + B I’
wall-friction velocity +* = ¢ r/:" )12
Where 1, = —L 4L R e e
w

2 X
Constantsk = 0.41.B= 5.0

The velocity profile depends on the pressure.



Hg supply piping in Muon Collider— Inlet pressure(2)

30 bar

Pressure loss = Wall friction + Elevation changes + Bend loss
=ZAP1 +ZAP3+ZAP3
3 L sz |
= A.SD 5t APg(Ac) + pghh

The friction coefficient in straight pipe, 1,. depends on Re and o;

The friction coefficient in curved pipe, 1.. depends on ke and %




Hg supply piping in Muon Collider— Inlet pressure(3)

(1) Pressure loss due to the wall friction in straight pipe

Re As
o < Zz(ﬂ)aﬁ 3000<Re<10° | As = 0.3164/Re?%?>
6 10°<Re < 10° As = 0.308/(0. 842 — lgRe)?
22(%)85?’ < Re < 59?(%)958 As =[1.14 — 21g( 0 1025)] 2
d__.
Re = 597(5)9;8 As = 0.11 (E)D.ZS

Note: 6 = relative roughness of tube or duct wall (mm), 6/d = the roughness ratio
Roughness table: http://www.engineeringtoolbox.com/major-loss-ducts-tubes-d 459.html

(2) Pressure loss due to the elevation

D _
AF elevation — ,L}f‘-:f&h
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Hg supply piping in Muon Collider— Inlet pressure(4)

(3) Pressure loss due to the bends

Prediction of turbulent pressure drop in curved pipes

e onf5)” o2’ -m{a{g]”]*”"*[.m_m{h[%)”]‘ ]

-03%
-ﬂ[gj =U-Uﬂiﬂ5+ﬂ_ﬂ33[ﬂe[i]1] pyos T
d D L ED.MZI:R‘E[-I] :|

e ﬁ’[R{%ﬂm b=t [!‘{%]ﬂ I}

d
dc =g, ::p[z::—] oy )
D . ,;r[g] = 0.00206 + D.ﬂSﬂd[Rc{%] }
0.5 27
9, =0.0395 £ 4) | 0275
D D) | d -04
4 d, =D.ﬂﬂl$?5+l}.3|ﬁﬁ(—] Re
b = L oog23 1. 44 D'Hm“f] MD
¢ =h|1+0.0823 +EIE; & =4, +ﬂ.ﬂt}3‘."{%}
102

-2 e o
1+ﬂ.u{h[%]2jl } #p'-ﬁ.;sjsm[%} R,_.-u:m[%j”

0s .l
D d
'#E[E] :ﬂ.{?}g;[ﬂﬂ(a]

P.L. Spedding, E. Benard and G.M. McNally, Fluid Flow through 90 Degree Bends, Dev. Chem. Eng. Mineral Process.
12(1/2), pp. 107- 128, 2004.



Hg supply piping in Muon Collider— Inlet velocity profile (1)

Laminar pipe flow (straight VS. bend )

Circular pipes Straight pipe Bend pipe
No. of dimension 2 Dimension 3 Dimension
Turbulent transition parameter | Re=2000 De=5000
Entry length | Laminar [.=0.06<Re=xD (~O(aRe) and ~0(a)) |I.=e,(De/6)?a (~O(aRr)*'?)
(e <L) Turbulent [,=44%Rel®xD 50D upstream and 70D downstream of the bend
to ensure fully developed flows;
Axial velocity only with peak at the pipe center: | Axial velocity peak near the bend outside;
Valocily Profiles
Smoolh Pipe Laminar Flow p s
Hy=10 | #=0.01 Mg <2,000 PR |
- v_ -_—
Reugh Pipa
f = friclion foclor - . .
Nz = Reynolds Number| Secondary flow exhibit at the pipe cross-section
Velocity profile
Inereasing Velocity ———
Flpa Fpe Center of
/ Curvalure
Leminer Flaw Turbulant Flaw ' Radius of |
Curvature
a isthe pipe radius: R is the bend radius, Curvature § = a/R: Dean number De = 262 Re; e, is the coefficient of entry length*

*1L.8. Yao and §.A. Berger. Entry flow in a curved pipe. I. Fluid Mech., Vol. 67, 177-196, 1975




Hg supply piping in Muon Collider— Inlet velocity profile (2)

Turbulent flow (fully developed downstream)
d Cross-stream velocity (secondary flow)

d Stream-wise velocity

180° bend tube (Re= 6x10% R_=4R, De=2.12x10%)

Sugiyama, H., Hitomi, D., "Numerical Analysis of Developing Turbulent Flow in a 180° Bend Tube by an
Algebraic Reynolds Stress Model”, Int. J. Numer. Meth. Fluids 2005; 47:1431-1449



Hg supply piping in Muon Collider— Inlet velocity profile (3)

Cross-stream velocity (secondary flow)
Exp.by Sudou and Takami LUy ——

- LAY

e LA
i

"-.-..lll‘_l‘uf

Concave
(outter wall)

Convex
(inner wall)

a2
[N,

Zoa/ D=5

(U2,+ U2) 2/ U,



Hg supply piping in Muon Collider— Inlet velocity profile (4)

Stream-wise mean velocity




Hg supply piping in Muon Collider— Inlet velocity profile (5)

Stream-wise velocity in middle plane of the square 90° bend

Re = 4x10* | A0fdll |
De = 26370
R.=2.3H

E

I

M. Raisee, H. Alemil and H. lacovides, Prediction of developing turbulent flow in 90°-curved ducts using
linear and non-linear low-Re k-€ models, Int. J. Numer. Meth. Fluids 2006; 51:1379--1405



Hg supply piping in Muon Collider— Inlet velocity profile (6)

Stream-wise velocity in middle plane of the rectangular 90° bend

bl

Re = 2.24x10°
De =91447
R.= 3H

fim

i
L1
H

\




Hg supply piping in Muon Collider— Inlet velocity profile (7)

Conclusions:
For fully developed turbulent downstream (bend pipe )

 Cross-stream velocity
The strength of secondary flow rapidly decreases in the downstream

Straight tube section (Z = 3.5D)

J Stream-wise velocity
Contour lines approach gradually the concentric circular contour, forming

the high value of contours near the outer wall side of the circular tube



Hg supply piping in Muon Collider— Inlet velocity profile (8)

Inlet velocity profile for Hg supply piping (L, ,s1eam=53-5D)

J Cross-stream velocity
No secondary flow

J Stream-wise velocity
Simple guess

Concentric circular contour lines with high value at the center

Fully Developed Region
> Entrance R R
(Le)straight > (Le)curved |« > >

Region
(Le)curved + turbulent < (Le)straight + turbulent F\b;, \_’SL ; :

Where (Le)straight+ turbulent ~ 4.4Re'*D = 42.4D /’ —

Boundary Layer

Yyvyy

5
u"ﬂ
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Turbulence models for bend pipe flow
—Turbulence model requirement

Bradshaw (1973)

Strong or even moderate curvature can significantly impact the turbulence

structure, which will influence the mean flow development.

Muck et al., (1985); Hoffman et al. (1985)

Convex curvature is stabilizing and suppresses turbulence levels, while

concave curvature is destabilizing and tends to augment turbulence.

Correct response to curvature effects



Turbulence models for bend pipe flow
—Turbulence models (1)

(J RANS-based turbulence models
— Linear eddy viscosity models (LEVM)

= Algebraic stress models
= One equation models
= Two equation models

— Nonlinear eddy viscosity models (NLEVM)
— Reynolds stress model(RSM)
d Computation of fluctuation quantities

— Large eddy simulation (LES)

— Direct numerical simulation (DNS)



Turbulence models for bend pipe flow
—Turbulence models (2)

. Injection

ved \.of energy = Dissipation of
l" v ’\_‘ } \. p— ene’V

. ..\_h___il,../‘ ’[ ’.I Dissipating
aree-scaie LUX Of energy > '
lge et FeRersy o eddies
i L.= L/Re™
Resolved adl
-
DNS Al
Resolved Modeled
e -
LES A
Resolved l Modeled
i L e -




Turbulence models for bend pipe flow
—Turbulence models (3)

Comparison among RANS-based turbulence models

RSM Numerically instability and stiffness; Explicitly and well predicting flow
Non-ideal in engineering applications. with streamline curvature
NLEVM  Still computationally costly; Comparable with RSM in capturing

Higher order terms in algebraic expression  curvature effects but lower cost

LEVM Modification needed in simulating flows Reasonable compromise between
with curvature effects, adverse pressure expense and physical realism in
gradient, separation, rotation, etc. engineering practice

Curvature-corrected k-€ model for engineering bend pipe flow problem



Turbulence models for bend pipe flow
—Past work on curved ducts (1)

k-€ model: Standard k- model; Realisable k-€ model; RNG k-€ model.

Continuty equation

dp 3 _
35 + E(Puﬂ =10

Ilomentum equation

E?u; E?u; __ar 3 Bus | Ui a”k e
Pl: az :I ax a x; [J'“: axj + axi 3 :I] x!_l: pujuz'
Turbulent lﬁnet:u: energy transporation equation
Bipk)  Blpuik) 3 Ak

ot o ol o)) Gut Ge o pe - Tut S5,

— " a ' soureE dissipaion  COMPrEssion

uns teady convesion diffission
Turbulent kinetic energy dissipation rate transporation equation
Aep) | Bepw)

a1 dx;, o
—

2
[(JJ»JF 5 aaE]JrUle (Gs:+f3'3ef3.5:" Czep%

. C g . . \—v—ﬂd‘_ -
. . SOLFCE LSSEINAaR
ums teady CORVECTON diffusion ?
Eddy wiscostty
_ k2
Hi = C;.:P?

Eevnolds stress model

—Pill; = ZHeSy — -:5 (;_.!, 9U; + i) (Boussinesq approxmation)

Constants
Cy=00%0,=100,=13C,.=144C5 =192

Where 1 = us + gy, w18 the mean veloctty vector, i, 12 the fluctuation velocity vector



Turbulence models for bend pipe flow
—Past work on curved ducts (2)

Curvature correction into k-€¢ models

1. Ad-hoc parameterization modification

Grooray, A.M. et al.(1985), Park, S.W. et al.(1989)
2. High-Re turbulence models + Wall-function approximation/Damping functions

Patankar, et al. (1975), Kreskovsky et al. (1981), Chang, et al.(1983),
Azzola, et al. (1986), lacovides, et al. (1987), Choi, et al.(1989),

William, et al.(2009)
3. Low-Re turbulence models

Raisee , et al.(2006)

Ability to resolve the near-wall motion

(Secondary motion is strongest within the near-wall regions)



Turbulence models for bend pipe flow
— Curvature-corrected k-€ models (1)

Linear low-Re turbulence model (Raisee, et al.2006)

. i
Contuity 3_;:3 =
Blues) _ 1 8P ——
IMomentum Cra ~F o, E'xz (-..r L — )
Reynolds Stress wu; = v;{ Eu, + ﬁj + zkﬁ

Turbulent wiscosity v, = CJ'L[T
g

Transportation equation of the turbulent kunetic energy

k) 3 Ve Ak - Ak |2

P = 3% [(v+ ﬂjﬂ_xj]+luk g — 2w 7, )
Transpottation E:quatic}n tor the homogeneous dissipatic::-n rate
Su;E)

axj_ - aj[{ vt :I ]+f1C1E'£:P.i: fECEE ';: +E+S

A<y,

Ox, 0%

Where 7 = [(2L 2L y12 _ Ol ey

Where B = 2vvi(5—=1)%. 5, = NEP = ma CuF(F + 1)_ 0]

3x; 3y
] B ;:3.l? aj _
with [ = £ 5 = C1[1- exp(-BR) + BoC1 Reesp(-BuR)]

Here ¢y = 255,58, = 0.1065,C, = 0,83



Turbulence models for bend pipe flow
—Curvature-corrected k-€ models (2)

Linear low-Re turbulence model (Raisee, et al.2006)

The homogeneous dissipation rate relates wath the real dissipation rate through:

3,k

= _ . _ 2
E=c¢ EV{—axj )
The darnping functions /., /1 and /2 are given by

Fu= exp[-2 401+ 0.028)214 = 12 = 1- 0. Zexp(E)
~ 2
Whete S, = f—@_ 1z the local turbulent Eevneolds number
Constants: Oy = 008 o, = 105, = 1.3 07 =091, = 1,42 05 =152



Turbulence models for bend pipe flow
— Curvature-corrected k- models (3)

Two-layer linear k-€ model (William D. York, et al.2009)

Turbulent kinetic energy transpott equation

CAVLO B IS EH: _1e U 2o 18U
Eraa el LS E[(“ Pr;; ]+ [21r(Sy = 58y 3~ 7 =)~ SPkB; ]ax - pe

Turbulent dissipation rate transport equatmn

2ps) A zr A e 1 é‘U: IR 1 f A
ot a—ﬁ(pt{,s] = a—f_{j[(# PrE )é‘xj 1+ Ca k[zﬂriﬂ' =5y 3' = Pkl P Cap=r

Turbulent stress (Boussinesq’s A zsumphion)
= 2
—Puty = 2Py — 5 yliro—- + pk)

Turbulent wiscosity
_ il
pr = Cup =

Turbulent wscostty coefficient
K+ O . Kgcn(ﬁ) + K032y
K+ KOl g2k g (TR
Where
= 28Ny W= 2y
Maodified flow rotation term

_ Uy -4
W= 501 —C4_2]+Q C4— ‘

Whete the relative fud rotation rate magmtude computed i an mertial frame 1s:
L2 = 2005005

Ilodel turbulent length scale

i iV, 3

—=)

Q 53‘

Ly = min



Turbulence models for bend pipe flow
—Curvature-corrected k-€ models (4)

Two-layer linear k-€ model (William D. York, et al.2009)

N vy
MNear-wall turbulent dissipation rate (when TLJ’ 15 friitrm)

_ .;CS'Q
E I
R
Where . = Cp[1— expl— ;” 1

L i )

Near-wall turbulent wiscosity (when —

Ee
pr = CupCpll- EXp(—ﬂ—“P}],

JEy

Where Fey = ——

Model constants

Pri =10Pr. =119, =144 T =192 K =066 K =39 ;=104 =53K;=2085,
Keg=170E;=100Kz =384 T4 =04, =24854, =49%24,=2510




Turbulence models for bend pipe flow
—Curvature-corrected k-€ models (5)

Cylindrical Coordinate System

r: distance from the center of the cross-section of the pipe;
0: angle between the radius vector and the normal to the plane of symmetry;

Z: stream-wise direction.

Bend:
Inlet at z=0; outlet at z= R_*bend angle

Where R_ is curvature radius
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Hg supply piping in Muon Collider
— Problems need studying (1)

A Influence of nozzle upstream on jet exit
* Bend curvature
« Bendangle

O Influence of nozzle shapes on jet exit
* Nozzle length

* Nozzle taper

d Turbulence level of the jet exit



Hg supply piping in Muon Collider
— Problems need studying (2)

Parameters’ Range

The size of the curved bend is limited by the solenoid bore (d=15cm)

ID,,, =0.884 inch=2.25cm
Bend curvature (6): 6 < 15/2.25 = 6.6 (U-bend)
Bend angle (a): 0 < a < oo
Nozzle taper™(0): 6° <06 <20°

Nozzle length™ (L): 2*ID ;. < L< 4*ID

pipe

S.J. Leach and G.L. Walker, The application of high speed liquid jets to cutting, Phil. Trans. Roy. Soc. (Lond), A
260, pp. 295-308, 1966.



Hg supply piping in Muon Collider
— Problems need studying (3)

Turbulence level (turbulence intensity)

= ¥
TI—U

1 N = |2
Y —J wx-l-uy + 1) J3k

U= JU%+L§?+U§

Where U’ is root-mean-square of the turbulence velocity fluctuations;
U is the mean velocity (Reynolds averaged)
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Work in near future

Grid generation for curved pipe with Gridgen
Implement the curvature-corrected k-€ models in CFD tool

Test the corrected model

W oe

MHD equations for curved pipe flow (if possible)



Nomenclature

AR Aspect ratio AR = H/D

D  Hydraulic diameter (m)

De Dean number De = Re(D/2R¢)?

I Turbulence intensity (%)

k Turbulence kinetic energy (m?/s?)
Pressure (N/m?)

R¢ Radius of curvature of U-bend (m)
Re  Reynolds number, pUoH/u

U Mean streamwise velocity component (m/s)
Uo  Average inlet velocity (m/s)

Y

uiu;  Reynolds stress tensor

\Y Mean transverse velocity component (m/s)

X Streamwise direction

y Spanwise direction

z Direction normal to the duct symmetry plane
Greek Letters

Jij Kronecker delta
€ Dissipation rate (m?/s?)
u Laminar viscosity of fluid (Pa - s)

Lt Turbulent viscosity of fluid (Pa - s)
p Density of fluid (kg/m)
Abbreviation

EASM Explicit Algebraic Stress Model

TCL SMC  Two Component Limit Second Moment Closure Model
LES Large Eddy Simulations

NLEVM Nonlinear Eddy Viscosity Turbulence Model

RSM Reynolds Stress Model

RNG Renormalization-group k — & model

RKE Realizable k — & model

SKE Standard k — & model

EARSM Explicit Algebraic Reynolds Stress Model



Literature review of turbulent flow in curved ducts

Existing experimental studies of the turbulent flow in curved ducts

Authors Year | R¢/D |Re De Cross-section (angle)
Rowel! 1970 | 12 2.36 x 10° 4.8 x 104 Circular (U)

Chang et al.[? 1983 | 3.357 | 5.67 x 104 2.1 x10* Square (U)

Azzola et al.®! 1986 | 3.375 | 5.74 x 104 — 1.1 x 105 | 2.2 x 104 Circular (U)

Sandborn, Shinf 1989 | 1 7 x 10% -5 x 10° 4.95 x 10* — 3.535 x 10° | Rectangular, AS = 10(U)
Taylor(? 1982 2.3 |4 x10* 1.86 x 104 Square (90°)

Answer et al.®] 1989 1 6.5 |5x104 13868 Circular (U)

Enayet et al?!] 1982 2.8 | 4.3x10% 1.82 x 104 Circular (90°)

Monson, Seegmiller(® | 1992 | 1 10,108 7.07 x 104,7.07 x 10° Rectangular,AS = 10 (U)
Cheah et al.["] 1996 | 0.65 | 10° 8.77 x 104 Square (U)

Sudo et al.?%] 1998 4.0 |6 x10% 2.12 x 104 Circular(90°)

Sudo et al.® 2000|2.0 |6x10* 3 x 104 Circular (U)

Lee etal.l 2007 | 3.357 | 5.74 x 10* 2.2 x 10* Circular (U)

Where R. the radius of the pipe centerline,
D the pipe diameter (for rectangular duct, D the duct width and H the duct height),
Dean number is defined as De = Re(D/2R.)%°
Re is the Reynolds number Re = pUgH/pu.

In the curved part of the U-bend, the cylindrical coordinate (r,0,z) corresponds to spanwise, streamwise, and normal

directions, with 6 = 0° at the beginning of the curve.




Author: Rowe

Year: 1970

Title: Measurements and Computations of Flow in Pipe Bends

Journal: Journal of Fluid Mechanics, Vol. 43, Part 4, pp. 771-783.

Problem: Experimental data for turbulent flow of 180° bend pipe in the early stage.

(Re = 2.36 x 10%;R./D = 12)

Results: The secondary flows cause a complete interchange of the slow moving wall fluid and the faster central
core, in an S-bend. Also, he reported that the revered flow of the secondary flow was generated locally near the
bend angle 90° for the turbulent flow of 180° bend tube under the condition of Reynolds number 2.36 x 10°.

Author: M. M. Enayet, M. M. Gibson, A. M. K. P. Taylor and M. Yianneskis

Year: 1982

Title: Laser-doppler measurements of laminar and turbulent flow in a pipe bend

Journal: International Journal of Heat and Fluid Flow, Vol.3, issue4, 213-219.

Problem: Laser-Doppler measurements are reported for laminar and turbulent flow through a 90° bend of
circular cross-section.

(laminar: Re = 500,1093; turbulent: Re = 4.3 x 10%;R./D = 2.8)

Results: The results show the development of strong pressure-driven secondary flows in the form of a pair of
counter-rotating vortices in the streamwise direction. The strength and character of the secondary flows were
found to depend on the thickness and nature of the inlet boundary layers, inlet conditions which could not be
varied independently of Reynolds number.

Author: Chang et al.

Year: 1983

Title: Measurements and Computations of Flow in Pipe Bends

Journal: PhysicoChemical Hydrodynamics, Vol. 4, No. 3, pp. 243-269.

Problem: 180° U-bend flow with a long upstream section which was used to develop an essentially
fully-developed flow at the inlet in which the boundary layers completely filled the duct.
(Re = 5.67 x 10%;R./D = 3.357)

Results: From the bend entry to the 90° plane the destabilizing effects of the curvature at the concave wall were
shown by the increase in the measured Reynolds stresses in this region. Between 90° and 180° striking variations
in the Reynolds stresses were measured in the radial direction.

Author: Azzolaetal

Year: 1986

Title: Measurements and Computations of Flow in Pipe Bends

Journal: ASME Journal of Fluids Engineering, VVol. 108, pp. 214-221.

Problem: 180° bend flow with circular cross section. (Re = 5.74 x 104 — 1.1 x 10%;R./D = 3.357)

Results: The flow produced in this configuration was quite different from the flow in a square U-bend. In a
circular cross-section U-bend the anisotropies between the normal stresses (generated at the corners of a square



cross-section duct) which modified the secondary motion were not present. However, the strong cross-stream
pressure gradients remained. The experiments showed that between 45° — 135° the cross-stream secondary flow
was reversed and redirected back towards the inner wall (in the inner half of the flow). Hence, there were four
secondary flow vortices; two each side of the symmetry plane.

Author: Sandborn and Shin

Year: 1989

Title: Water Flow Measurements in a 180 Degree Turn-Around Duct

Journal: Report Prepared under Contract No. NAS8-36354.

Problem: Investigated 10-by-100 centimeter, 180°-turn water tunnel, with a 10cm centerline radius of curvature
thus Re/D = 1.Measurements for a range of Reynolds numbers from 70,000 to 500,000 were reported.

Results: The large aspect ratio, AS = 10, of the duct produced a quasi-twodimensional flow, fig. 1. At the turn
entrance, the flow along the outer concave surface experienced an adverse pressure gradient, which produced a
near separation condition for the lowest Reynolds number flow. However, at the higher Reynolds numbers no
separation was observed. A separation bubble occurred on the inner convex surface at approximately 150°
around the turn. The separation bubble persisted for some distance downstream of the turn exit.

Flow turns away from outer surface.
Adverse pressure gradient along outer surface,
Start /

Approaches, but does not reach
incipient detachment.

After |15 degrees the radial turbulent
velocity increases very rapidly and
continues to grow around the turn.

A

BN

Flow turned toward
inner wall. Very large
acceleration and favor-
pressure gradient,

Relaminarization along
inner wall

FLOW

Maximum velocity in the turn
occurs just upstream of 90 deg
very close to the inside surface.

Separation bubble starts at
I50 deg around the turn for
Re 250,000.

g Acceleration along outer wall

reduces the shear layer.

7 Very large fluctuations in the region
Separation bubble extends of the separation bubble.
at least 1D downstream
of turn exit.

Fig.1 Global characteristics observed in the U-bend, Sandborn and Shin

Author:  Anwer et al.

Year: 1989

Title: Perturbation by and Recovery from Bend Curvature of a Fully Developed Turbulent Pipe Flow
Journal: Journal of Physics of Fluids A, Vol. 1, No. 8, pp. 1387-1397.

Problem: Measured the mean flow and turbulence through a U-bend of circular cross section and downstream
tangent.

(Re = 5x 104 R./D = 6.5)

Results: Contrary to Rowe’s!! finding; they found that the flow failed to achieve a fully developed state within
the U-bend. They concluded that the complete recovery would take more than 18 diameters downstream tangent



of the bend exit.

Author: Monson and Seegmiller

Year: 1992

Title: An Experimental Investigation of Subsonic Flow in a Two-Dimensional U-Duct

Journal: NASA Technical Memorandum 103931.

Problem: Nominally two-dimensional experiment on flow through U-duct.(Re = 10%,108;R./D = 1)

Results: The significant observations about the flow were: 1) large turbulence enhancement occurred near the
outer (concave) wall; 2) almost total damping of turbulence occurred near the inner (convex) wall; 3) separation,
the extent of which increases with increasing Reynolds number, occurred on the inner wall at the bend exit; and
4) high levels of turbulence and unsteadiness occurred in all regions of the flow downstream of the bend.

Author: Sudo et al.

Year: 1998

Title: Experimental Investigation on Turbulent Flow through a Circular-Sectioned 90° Bend

Journal: Experiments in Fluids, VVol. 25, pp. 42-49.

Problem: The steady, turbulent flow in a circular-sectioned 90° bend with smooth walls. The bend had long,
straight upstream and downstream pipes

(Re = 6 x 104,10°%;R./D = 4.0)

Results: The longitudinal, circumferential and radial components of mean and fluctuating velocities, and the
Reynolds stresses in the pipe cross section at several longitudinal stations were obtained. The velocity fields of
the primary and secondary flows, and the Reynolds stress distributions in the cross section were illustrated. (1) In
the inlet region of the bend, the primary flow accelerates near the inner wall and a secondary flow moving from
the outer to the inner wall of the bend occurs in the bend cross section; (2) At station ¢ = 30° in the bend, the
secondary flow develops into a pair of vortices, as seen in fully developed curved pipe flows, but the primary
flow remains deflected toward the inner wall. The Reynolds stress w'u’ tends to decrease in the inner part of the

cross section and v'w’ increases in the outer part; (3) Between ¢ = 75° and 90°, the velocity contours of primary
flow are greatly distorted and a depression in the contour plot is formed in the inner part of the bend cross
section. The turbulence intensity and the Reynolds stresses increase around the depression of contours,
coinciding with the large velocity gradient there; (4) Just behind the bend exit, the primary flow velocity in the
central region of the pipe decreases and the correlations of fluctuating velocities exhibit a complicated
distribution according to the variation of primary flow velocity profiles; (5) At successive downstream stations,
the distribution of primary flow velocity gradually becomes smooth. The secondary flow weakens and vortices
break down. The influence of the bend on the flow, however, remains even at z/d = 10.

Author: Sudo et al.

Year: 2000

Title: Experimental Investigation on Turbulent Flow through a Circular-Sectioned 180° Bend

Journal: Experiments in Fluids, Vol. 28, pp. 51-57.

Problem: Steady, developing turbulent flow in a circular sectioned 180° bend.(Re = 6 x 10%;R¢/D = 2.0)
Results: They measured the longitudinal, radial and circumferential components of mean velocity, and



corresponding components of the Reynolds stress at various longitudinal stations. In the section between 6 = 40°
and 60°, two vortices in the cross section were developed rapidly and accordingly the fluid with high velocity
near the inner wall was transported towards the outer wall by the secondary flow. Meanwhile, the fluid near the
upper and lower walls, the momentum of which was small in the longitudinal direction, was forced inwardly
along the walls by the vivid secondary flow. In the section from the bend angle of 90°, the high-velocity regions
occurred near the upper and lower walls as a result of strong secondary flow and the turbulence with high level
emerged in the central region of the bend. Just behind the bend exit, an additional pair of vortices appeared in the
outer part of the cross section owing to the transverse pressure difference. In the downstream tangent, the flow
returned slowly to the proper flow in a straight pipe.

Author: Lee, G.H. etal.

Year: 2007

Title: Measurement of Developing Turbulent Flow in a U-Bend of Circular Cross-Section

Journal: Journal of Mechanical Science and Technology, Vol. 21, No. 2, pp. 348- 359.

Problem: Hot-wire measurements of the full mapping of the velocity and Reynolds stress components for
developing turbulent flow in a strongly curved 180° pipe and its tangents.(Re = 5.74 x 10%;R./D = 3.357)
Results: The strength of secondary flow was reached up to the 35% of bulk mean velocity. The strong
counter-rotating vortex pair induced by the transverse pressure gradient and centrifugal force imbalance was
grown up to 6 = 67.5° into the bend. But the counter-rotating vortex pair was broken down into two cell pattern
after 6 = 67.5° of the bend. Significant double maxima in the streamwise velocity profiles were appeared in the
bend region due to the breakdown of counter-rotating vortex pair. In the bend, the mean longitudinal velocity
component was changed little after = 90°, but secondary flow never achieved fully-developed state. Similar
behavior was observed in the normal and circumferential stresses.



Existing numerical studies of the turbulent flow in curved ducts

The problem of numerical simulation of developing flow in U-bend has been the subject of considerable research
for the past twenty years

Authors Year | Turbulence Model Near Wall Treatment | Cross-Section | Re De
Patankar et al.*® | 1975 | k — & model Wall function Circular 2.36 x 105 | 3.41 x 10*
Kreskovsky et al?? | 1981 | Simple mean field closure --- Square (90°) |4 x 10* 26370
model for Reynolds stresses
Chang et al.[?l 1983 | Standard k — & model Wn Square(U) 5.67 x 10*| 2.1 x 10*
Azzola et al.l®! 1986 | Standard k — & model MLH Square (90°) |5.74 x 10* | 2.22 x 104
Van Driest damping
lacovides et al.[?4] | 1987 | Standard k — & model MLH Square (90°) |4 x 10* 26370
Choi et al.l% 1989 | k — & model and ASM MLH Square (U) 5.8 x 10 | 2.23 x 10*
lacovides et al.*Y) | 1990 | ASM MLH
Van Driest damping
Rumsey et al.[*?] 2000 | EASM and one and two- ---
equation eddy viscosity model
Sugal*®! 2003 | TCL SMC and Shima Model | - - - Square(mild) | 5.67 x 10* | 2.1 x 104
Square(strong) | 10° 8.77 x 104
Sugiyama et al.[*4 | 2005 | ASM Wall function 6 x 10* 2.12 x 10*
Raisee et al [2° 2006 | Cubic non-linear low-Re --- Square(90°) | 4 x 10* 26370
k — & model --- Rectangular | 2.24 x 10° | 91447
Miinch, Métais!*®) | 2007 | LES --- Square(U) 6 x 104 2.27 x 104
1.66 x 10*
1.31 x 104
Xu et al.[6] 2008 | NLEVM, EASM and RSM Wall function 2D U-duct 108 7.07 x 10°
Djebedjian et al.'”] | 2008 | k — £ model, RNG model, --- Square(mild) | 5.67 x 10* | 2.1 x 10*
Realizable k — £ model, --- Square(strong) | 10° 8.77 x 104
k — @ model and RSM
William, et al.*®1 | 2009 | Linear k — ¢ model Two-layer near-wall 108 5x 10°




Author:  S.V.Patankar, D.B.Spalding

Year: 1975

Title: Prediction of turbulenct flow in curved pipes

Journal:  J. Fluid Mech.,Vol. 67, 583-595,

Problem: Finite difference procesdure to predict the development of turbulent flow in curved pipes.
(Re = 2.36 x 10%;R./D = 23.9)

Model: k — & turbulence model + wall function

Equations: The turbulence model used involves the solution of two differential equations, one for kinetic
energy and the other for its dissipation rate. Wall functions were used to specify the near-wall velocity, shear
stress, dissipation rate and dissipation term.

The equations are described in toroidal coordinate (r,v,8). The flow is treated as parabolic and the diffusion flux
in the v direction together with terms of small order of magnitude are neglected:

The governing differential equations in the central region of the flow (fully turbulent flows)

oUr U  Ursiny 1 Uy, = Uy,cosy
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Shear stress
zij = (1 + u)Djj
Where
wi is the molecular viscosity of the fluid (assumed constant throughtout the pipe cross-section).
,thZCuPKZ/G

{Dj;} is the deoformation tensor,
Expending Dj; in the (r, y,0) coordinate
oU,

or’

Tro = u( ?gé - rg + 8(;Jr@ ) = Tor,

T = 2[.1
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With constants: C, = 0.09,C; = 1.47,C, = 1.92,0x = 1.0,0, = 1.3
Wall regions (low Reynolds number of turbulence pk?l/u;, where | = k3?/¢)
Point P is located sufficiently far from the wall for the local turbulent Reynolds number (pk21/u)p to be much
greater that unity. It is then assumed that a logrithmic velocity profile prevails in the region between the wall and
the node P, the expression for the velocity being
Near-wall shear stress
,DK'C;l;Mk%)/ZUP

In(EyeCi*kp?/pu1)
Where the subscript P indicates values at grid node P,
yp is the distance of P from the wall,
k and E are the log-law constants.
Near-wall shear stress kinetic dissipation rate (the length scale varies linearly with the distance from the wall)

3/4k3/2/1<y
Where ke represents the turbulent kinetic energy near the wall and is calculated from the regular balance
equation, the diffusion of energy being set equal to zero. The dissipation term in the Kinetic-energy equation is
assigned an average value over the control volume for the node near the wall,
pE = pJ‘YN edy = C3/4k3/2 .P(;N %ydy
Results: The agreement of predicted total-velocity contours with Rowe’s[tl measurements for the developing
flow in a 180° bend is fairly satisfactory: for both of the predictions and the experiments, the velocity field is
distorted with the velocity maximum shifted to the outside of the bend; The secondary velocities increase upto a
distance of 30° and then decrease, owning to the production of streamwise vorticity of opposite sign. The
predictions also display such a reduction in the secondary flow.

+(

Author: Kreskovsky, J.P., Briley, W.R., McDonald, H.

Year: 1981

Title: Prediction of laminar and turbulent primary and secondary flows in strongly curved ducts
Journal:  NASA Report, No. CR.3388

Problem: Employed a simple closure model for the Reynolds stresses to predict the 90° bend flow of square
cross-section.

(Re = 4 x 10%;R¢/D = 1.15)



Model:  Simple mean field closure model for Reynolds stresses

Equations:

Results: Good agreement was achieved compared with Taylor’s experiment, though there was insufficient
growth of the boundary layer on the convex inner surface toward the end of the bend where the flow on that
surface encountered a substantial adverse pressure gradient.

Author: lacovides H, Launder B.E., Loizou P.A.
Year: 1987
Title: Prediction of laminar and turbulent primary and secondary flows in strongly curved ducts

Journal: NASA Report, No. CR.3388

Problem: Using a two-layer EVM (effective viscosity model), to performed numerical computations for a 90°
bend flow of square cross-section. (Re = 4 x 10%;R¢/D = 1.15)

Model: Standard k — ¢ model + MLH

Equations:  Standard k — € eddy-viscosity was employed for the main flow region, while the mixing-length
hypothesis was used across the low-Re near-wall region

Results: The computational results showed that the curvature induces a pair of counter-rotating vortices
within the duct cross-section.

Conclusions: The level of agreement was better than obtained by Kreskovsky et al.

Author: S.M. Chang, J.A.C. Humphrey, A. Modavi,

Year: 1983

Title: Turbulent Flow in a Strongly Curved U-bend and Downstream Tangent of Square Cross-Sections
Journal:  PhysicoChemical Hydrodynamics, Vol. 4, No. 3, pp. 243-269.

Problem: Using a two-layer EVM (effective viscosity model), to performed numerical computations for a
U-bend flow of square cross-section.(Re = 5.67 x 10%;R¢/D = 3.645)

Model: High-Reynolds-number linear k — e model + wall function

Equations: Two-equation high-Reynolds-number linear k — & model to calculate the flow, using wall functions
to specify the near-wall velocity and turbulence conditions. To reduce the computational requirements, a
semi-elliptic procedure was adopted which required only the pressure to be stored over the whole domain. Other
variables (U, V,k, &) were calculated on a plane by plane basis, with the code “sweeping” through the planes in
the streamwise direction.

Results:  As the numerical model employed was isotropic, the redistributive effects of the cross-stream normal
stresses were not present and the minima in the streamwise velocity between 90° and 130° were not predicted.
They also failed to calculate the vortex at the convex (inner) wall corner which was associated with local
separation.

Author: Azzola, J., Humphrey, J.A.C., lacovides, H., and Launder, B.E.
Year: 1986
Title: Turbulent Flow in a Strongly Curved U-bend and Downstream Tangent of Square Cross-Sections

Journal: PhysicoChemical Hydrodynamics, Vol. 4, No. 3, pp. 243-269.



Problem: Incorporated some important improvements to their numerical model, over that used previously by
Chang et al.(Re =;R¢/D =)

Model: High-Reynolds-number linear k — £ model + zonal model (MLH with VanDriest damping term)
Equations:  Semi-elliptic linear k — ¢ model was retained, but the wall functions were dropped and a zonal
model was applied, extending a fine grid right up to the wall. In the wall-region the Mixing Length Hypothesis
(MLH) was employed with a Van Driest damping term.

Conclusions: On the whole, the semi-elliptic linear k — & model calculated the flow, including the secondary
motions, reasonably well. As expected the levels of secondary flow induced in the U-bend were less than those
present in a square sectioned U-bend.

Author: Choi, Y-D., lacovides, H., and Launder, B.E.

Year: 1989

Title: Numerical Computation of Turbulent Flow in a Square Cross-Sectioned 180° Bend

Journal: ASME Journal of Fluids Engineering, VVol. 111, pp. 59-68.

Problem: Used the k — & model and Algebraic Stress Model (ASM) for the numerical calculations of the

square sectioned U-bend

(Re = 5.8 x 10%;R¢/D = 3.357)

Model: High-Reynolds-number linear k — £ model + zonal model (MLH with VanDriest damping term)
Equations:  Semi-elliptic linear k — ¢ model was retained, but the wall functions were dropped and a zonal
model was applied, extending a fine grid right up to the wall. In the wall-region the Mixing Length Hypothesis
(MLH) was employed with a VVan Driest damping term.

Results: At the 130° station in the bend the model with the ASM predicted a complex flow pattern with four
vortices either side of the symmetry plane. (The linear k — & /MLH model predicted three vortices; the linear
k — e/wall function model predicted two). Whilst the experimental measurements were too coarse to compare the
measured and calculated secondary flow profiles in detail, it seemed highly likely that the four-vortex pattern
was indeed accurate due to the improvements in predicting the streamwise velocity profiles.

Conclusions: Calculations using an Algebraic Stress Model (ASM) in place of the linear k — & model improved
the predicted flow further.

Author: lacovides, H., Launder, B.E., Loizou, P.A., and Zhao, H.H.

Year: 1990

Title: Turbulent Boundary-Layer Development around a Square-Sectioned UBend: Measurements and
Computation

Journal:  ASME Journal of Fluids Engineering, Vol. 112, pp. 409-415.

Problem:  Carried out calculations on the square sectioned U-bend with thin boundary layers (0.15D) at the
bend inlet.

Model: Semi-elliptic ASM + MLH with VanDriest damping term

Equations:

Results:  The flow profile was calculated at least as well as by Choi et al.1'%, when they had calculated the
flow with fully developed inlet conditions. However, the secondary flow plot at 135° showed five vortices either
side of the symmetry plane, and so despite the lower amount of Reynolds stress anisotropy and secondary flow at



the inlet to the bend, the flow seemingly broken down into an even more complex secondary flow pattern. Choi
et al.[*% noted that this breakdown of the classic single secondary vortex occurred later in the calculations than in
the measurements.

Author: Rumsey, C.L., Gatski, T.B.

Year: 2000

Title: Turbulence Model Prediction of Strongly Curved Flow in a U-Duct

Journal: AIAA Journal, Vol. 38, No. 8, pp. 1394-1402.

Problem: Studied the ability of three types of turbulence models to predict the effects of curvature on the
flow in a U-duct (Re =;R¢/D =)

Model: EASM, one- or two-equation eddy viscosity models

Equations:

Conclusions: The Explicit Algebraic Stress Model (EASM) performed better than one- or two-equation eddy
viscosity models, provided that the variation of the production-to-dissipationrate ratio in the flow was accounted
in the EASM formulation.

Author: Suga, K.

Year: 2003

Title: Predicting Turbulence and Heat Transfer in 3-D Curved Ducts by Near-Wall Second Moment
Closures

Journal: AIAA Journal, Vol. 38, No. 8, pp. 1394-1402.

Problem: Predicted turbulence and heat transfer in two types of square sectioned U-bend duct flows using two
versions of the wall-reflection free low-Reynolds-number second moment closures (mild:
Re = 5.67 x 104 R¢/D = 3.357; strong: Re = 10° R¢/D = 0.65)

Model: TCL SMC and Shima model

Equations:  Component Limit Second Moment Closure (TCL SMC) turbulence model and the Shima model
are used. For the turbulent heat transfer fields, the standard and the higher order generalized gradient diffusion
hypothesis (GGDH) heat flux models were respectively coupled with the Shima and the TCL SMCs.
Conclusions: The prediction by the TCL SMC was generally reliable for the flow fields in the U-bend ducts
with both curvature ratios. Its overall performance was better than the one by the Shima model.

Author: Sugiyama, H., and Hitomi, D.

Year: 2005

Title: Numerical Analysis of Developing Turbulent Flow in a 180° Bend Tube by an Algebraic Reynolds
Stress Model

Journal: International Journal for Numerical Methods in Fluids, Vol. 47, pp. 1431-1449.

Problem: Numerical analysis for three dimensional developing turbulent flow in a U-bend with circular
cross-section using an algebraic Reynolds stress model. (Re = 6 x 104;R./D = 4)

Model: ASM + wall function

Equations:



Results: Calculated results were compared with available experimental data. The calculated results showed
a comparatively good agreement with the experimental data of the time-averaged velocity and the secondary
vectors in both the bent tube and straight outlet sections. For example, the location of the maximum streamwise
velocity, which appeared near the top or bottom wall in the bent tube, was predicted correctly by their method.
Conclusions: The prediction by the TCL SMC was generally reliable for the flow fields in the U-bend ducts
with both curvature ratios. Its overall performance was better than the one by the Shima model.

Author: Minch, C., and Métais, O.

Year: 2007

Title: Large Eddy Simulations in Curved Square Ducts: Variation of the Curvature Radius

Journal: Journal of Turbulence, Vol. 8, No. 28, pp. 1-18.

Problem: Investigated numerically the influence of the curvature radius Rc on the flow carrying out three

Large Eddy Simulations (LES) for U-bends with R¢/Dp = 3.5,6.5 and 10.5. (Re = 6 x 10%)

Model: Large Eddy Simulations

Equations:

Results: Decrease of the curvature radius was accompanied by a strong intensification of the secondary
transverse flows. They also showed that the secondary flows strength was directly related to the radial pressure
gradient intensity.

Conclusions: The prediction by the TCL SMC was generally reliable for the flow fields in the U-bend ducts
with both curvature ratios. Its overall performance was better than the one by the Shima model.

Author: Xu, J.I., Ma, H.Y., and Huang, Y.N.

Year: 2008

Title: Nonlinear Turbulence Models for Predicting Strong Curvature Effects

Journal: Applied Mathematics and Mechanics - English Edition - Shanghai, Vol. 29, No. 1, pp. 31-42.
Problem:  Analyzed the curvature effects on the structure of turbulence and conducted numerical simulations
of a turbulent U-duct flow with a number of typical non-linear eddy viscosity turbulence models in order to
assess their overall performance. (Re = 6 x 104, R./Dy, = 1)

Model: NLEVM, EASM and RSM

Equations:

Results:

Conclusions: The numerical results showed that a cubic Nonlinear Eddy Viscosity Turbulence Model (NLEVM)
that performs considerably well in other benchmark turbulent flows was able to capture the major features of the
highly curved turbulent U-duct flow, including the damping of turbulence near the convex wall, the enhancement
of turbulence near the concave wall, and the subsequent turbulent flow separation. The predictions of the cubic
models were quite close to that of the Reynolds Stress Model (RSM), in relatively good agreement with the
experimental data of Monson and Seegmiller.

Author: Djebedjian, B., Mohamed, M.S., and Elsayed, A.
Year: 2008



Title: Numerical studies of curvature effect on turbulent flows in 180° curvature ducts

Journal: Proceedings of IEC 2008, 6th International Engineering Conference, Mansoura/Sharm EI-Sheikh,
Egypt, 20-23 March, Vol.

2, pp.347-370

Problem:  Investigated numerically the two-and three-dimensional incompressible turbulent flow through two

types of square sectioned U-bend duct flows with mild and strong curvatures (mild:
Re = 5.67 x 104, R¢1/D = 3.357; strong: Re = 5.67 x 10°R/D = 0.65). Calculations were carried out using
the flow analysis program FLUENT.

Model: Standard k — & model, Renormalization-group (RNG) k — & model, Realizable k — & model, k — @
model and RSM
Equations:

Continuity: %—’: + i_(pu,—) =0

Momentum: p(a“' 8u.) ai[ oui. +5UJ 8uk)]

_ O (_ouu
oXj  OXi 3 Oi OXk OXi (=pujui)

Where u; is the mean veIOC|ty vector
oij Is the Kronecker delta
ﬁ is the unknown Reynolds stress tensor

Conclusions: All models managed to mimic the general flow patterns and to predict a later separation position
than the experiment. The reattachment lengths predicted by all models were overpredicted. More advanced
turbulence model such as the Reynolds stress model and RNG k — & model had more reliable numerical results
especially at separation zone. All models give more reliable results in the three-dimensional analysis in
comparison with twodimensional.

Author: M. Raisee, H. Alemil and H. lacovides

Year: 2006

Title: Prediction of developing turbulent flow in 90°-curved ducts using linear and non-linear low-Re
k — e model

Journal: Int. J. Numer. Meth. Fluids 2006; 51:1379-1405

Problem:  Numerical prediciton of the velocity and pressure fields in flow through two 90°-curved ducts, one
of a square cross-section and one of a rectangular cross-section (Square: Re = 4 x 104 R¢/Dy = 2.3;Square:
Re = 224000,R./Dy, = 3).

Model: Linear and non-linear low-Re k — € model
Equations: Steady incompressible flow
L0
Continuity: _ax,- =0
. oY) 1 6P oL8Jp—
Momentum: X P ox 8x. —-— (== o - )

Where P is the pressure, upper and lower case U’s denote mean and fluctuating velocities and Tju; is unknown Reynolds
stress.

Nonlinear eddy viscosity model (NLEVM)
ou;
aj = —— — l5ij =-Ytg; + Cl%(sikskj -

K 3 K l3k|5k|5ij) + CZ%(QikSkj + Q4Ski) + CS%(Qikaj - lQ|<|Qk|5ij)

3 3



+C4—(S|kQu + S Qi) + C5 (QanmSmJ + SiQimQmj — 2 = SinQmnQnidij) + Ce vik > SijSkSk + C7 vik > SijSkiSk

3
Where S;; and Q;; are strain and vorticity rate tensors, respectively,
- aUl aUJ _ 0U; _ 8Ui
(] Cr |C3 Cy Cs | Cg C7

—0.1/0.1/0.26 -10c2|0 | —5c2 | 5¢2

— mi 12
Where ¢, = min[0. 009, 153577 T ]

with n= max(§,Q),§ = /O.SSi,-Si,- ,Q = % /0.5QijQij
and fgrs = 0.235[max(0,n — 3.333)]?

Turbulent viscosity

N =~

400 )
2
Vi = Cufuk?
The viscous damping of v, f, = 1 — exp{- ( )1’2 (400)2}
The transportation equation of the turbulent klnetlc energy k and homogeneous dissipation rate € are similar to those of

linear model:
Turbulent kinetic energy transport equation

o(uik) _ o [(V+£)g)‘(<_]+P —e—2v(a‘/—

OX; B OX; OX;
Turbulent dissipation rate transport equation
owe)

0 Vi 08 Zp, _f,C, 5
an = an [(V+ Gk)axj]+f1C1€kPk szz€ K +E+S€

N2
f1 and f, are given by f; = 1,f, = 1 - 0.3exp(Ry)
Where R = % is the local turbulent Reynolds number

The near wall source term E is expressed as

Svik? ,_2U; 5
. 000222 (5 5,) for Ry < 250

0 for R, > 250

~2
S. = NYP = max[CwF(F +1)£- 0]

12 _ ale
Where F = [( ﬁx, ﬁx, ) Y —=1/C,
with | = % aa—'; — Ci[1 - eXp(—B.Ry) + B.C1R1eXp(—BR1)]

Here C; = 2.55,B, = 0.1069,
0.83min(1,Ri/5)

0.8 +0.7(n'/3.33) 2 exp(~R/125)

Where ' = max[%, Y

Cw:

€
The homogeneous dissipation rate relates with the real dissipation rate through:

€=€e-2v(—/— ‘/—



Linear low-Re k — € model

— i oy
ujuj = —Vt(g—)lij' + 21y + Zks;
2

The turbulent viscosity vt, is obtained from v = c,lf,,k?

Transportation equation of the turbulent kinetic energy

ouk) _ 5 Vi ok . af
x  Bx, [(V+Gk)an]+Pk T -2v(

Transportation equation for the homogeneous d|SS|pat|on rate ©

ow®d) _ 5 Vi) OF
X o [((v+ 5 ) _]+f101€kPk f2C2€ k +E + S

Where E = 2vvt(

L_y2'S. = NYP = max[C, |:(|:+1)€ 0]

|a Xj
_ (ol w2 _ Ole
Where F = [(=- o ax, =) 3y ==£]/Cy
with | = K2 %'; — Ci[1 - exp(=B.Ry) + B.C1R1exp(—BR1)]

Here C; = 2.55,B. = 0.1069,C,, = 0.83
The homogeneous dissipation rate relates with the real dissipation rate through:

aJ_

= € —
The damping functlons f.,f1 and f, are given by
f, = exp[=3.4/(1 + 0.02R)2),f, = 1,f, = 1— 0.3exp(R;)

~ 2 .
Where R; = \lf_E is the local turbulent Reynolds number

C. ok o o1t Ci Co
0.09 1.0 1.3 09~1.0 1.43 192

Results: It was shown that for the bend of square cross-section the curvature induces a strong secondary
motion, while for rectangular cross-section the secondary flow is confined to the corner regions. The curvature
also in fluences the flow development along the straight upstream section of the duct by inducing a weak
cross-duct motion near the entrance of the curved section. Curvature causes the pressure gradient to change sign
along the convex and concave walls of the curved section, which results in local redistribution of the stream-wise
velocity profile along the curved section. The effects of curvature are also present downstream of the curved
section, though slowly diminishing with the development of the main stream.In the case of bend of square
cross-section an extra pair of vortices appears along the convex surface near the bend exit which results in strong
span-wise gradient of the stream-wise velocity in the duct core. These features are not present in the bend of
rectangular cross-section.

Conclusions: Both turbulent models can produce reasonable predictions for square cross-section bend, while the
non-linear k — & model returns superior predictions of the turbulence field and also of the pressure and friction
coefficients in rectangular cross-section bend. However, the weakness of the non-linear k — ¢ is in the prediction
of the flow recovery after the bend exit. To address this weakness, would probably require the use of full
second-moment closures that account for transportant effects on the turbulent stresses.




Author: William D. York and D.Keith Walters, James H. Leylek

Year: 2009

Title: A simple and robust linear eddy-viscosity formulation for curved and rotating flows

Journal: International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 19 Iss: 6, pp.745 - 776
Problem: A new eddy-viscosity formulation to exhibit a correct response to streamline curvature and flow
rotation.

(Re = 10%,R/Dp = 2)

Model: Linear k — £ model + near wall treatment

Equations:  The formulation is a linear k — ¢ model with a two-layer near-wall treatment in FLUENT solver.
The model solves equations for turbulent kinetic energy (k) and dissipation rate(e) in the far-field, while solving
only the k equation near the wall and prescribing a length scale based on wall distance. The dissipation rate is
calculated via an empirical correlation based on local wall distance. The interface between the near wall region
and the far field is evaluated based on the smaller of the two length scales determined by either the wall distance
or the dissipation rate. The Reynolds-stress anisotropic tensor is based on modified form of the differential
Reynolds-stress model of Speziale(1991) and the assumption of local structural equilibrium (weak equilibrium).
Specifically, the eddy viscosity coefficient C, is formulated to reproduce the proper response to streamline
curvature and/or reference frame rotation, yielding a curvature-corrected linear eddy viscosity model. In contrast
to the non-linear model forms for which the anisotropic tensor includes higher-order constructions of S and/or
Qijj.

Turbulent kinetic energy transport equation

AR+ LU = - l+ 502+ 2urs - 36,500 - Zpkoy S0 —po

Turbulent dissipation rate transport equation

O(pe) 8U|

i DU = i 56 ) _ 1_ ) i _g?

Turbulent viscosity

HT = Cul_Jsz

Turbulent viscosity coefficient
Ki+ KZC#(STk)Z + K3Cy(s7k) + K4Cz(%k)3
Ks + KeCp(SK)2 4 KrC2(SK )4 4+ Ko( WK )2

Where
S = ZSijSij ,W = 2WijWij
Modified flow rotation term

_ls.1_Ca-4 ‘ 90_5

- s-a-gpra-gog| < [3o- 39|
Where the relative fluid rotation rate magnitude computed in an inertial frame is:
Q = [2Q;Qj

Turbulent stress (Boussinesq’s Assumption)
_ﬁu—iuj = 2u7Sij — u(.UT U + pk)

Model turbulent Iength scale



312
Lt = min(—CLyg’k )

C|_y

Near-wall turbulent dissipation rate (when —z= is minimum)
k3/2
£
Where I, = CLy[1 — exp(— iey )]
Near-wall turbulent viscosity (when % IS minimum)
- Re
HT = C.Up‘/ECLy[l - eXp(_ Agy )]’

Where Rey = @

Model constants

Pre, =1.0,Pr, =1.19,C,q =1.44,C,» = 1.92,K; = 0.66,K; = 3.9,K3 = 1.0,K4 = 5.3,Ks = 2.9,

Ke = 17.0,K7 = 10.0,Kg = 3.84,C4 = 0.4,C_ = 2.495,A, = 4.99,A, = 25.0

Results:  The new model is tested on several two- and three-dimensional problems, including rotating channel
flow, U-bend flow and internally cooled turbine airfoil conjugate heat transfer. Predictions are compared to those
with popular eddy-viscosity models. For the 2-D flow in a U-bend, the model exhibits the correct response to the
curvature, including the velocity profile and turbulent kinetic energy at 6 = 90°, 6 = 180° in the U-bend , as well
as skin friction coefficient for inner and outer walls respectively.

Conclusions: The new model shows better results than SKE model and RKE model. The approach adopted here
for linear eddy-viscosity models may be extended in a straightforward manner to non-linear eddy-viscosity or
explicit algebraic stress models.



Important concepts:

(1) Weak-equilibrium assumption

PUY 2
pk 3

untrue in flows with streamline curvature, and the effect is amplified in cases where such curvature is significant.

Reynolds stress anisotropy tensor bjj = 0ij to be constant along a streamline. This assumption is

(2) Boussinesq approximation

—puu; = 2078 — %&j(#T—%;JII + pk)

(3) Turbulence intensity

!

= U
TI—U

Where u’ is the root-mean-square of the turbulence velocity fluctuations and U is the mean velocity (Reynolds
averaged).
If the turbulent energy k is known, then u’ can be computed as:

u = ‘/%(u;2+u/y2+u;2) = ‘/%k

U can be computed from the three mean velocity components Uy, Uy and U, :

U= /UZ+UZ+U2

High-turbulence case: High-speed flow inside complex geometries like heat-exchangers and flow inside rotating
machinery (turbines and compressors). Typically the turbulence intensity is between 5% and 20%
Medium-turbulence case: Flow in not-so-complex devices like large pipes, ventilation flows etc. or low speed
flows (low Reynolds number). Typically the turbulence intensity is between 1% and 5%

Low-turbulence case: Flow originating from a fluid that stands still, like external flow across cars, submarines
and aircrafts. Very high-quality wind-tunnels can also reach really low turbulence levels. Typically the
turbulence intensity is very low, well below 1%.

(4) Averaging
General N-S equations

op | dpuj) _
ot * an =0

()
Oui Ouiy _ 0P aTij
PG tUia ) = Tt ax,

Where z{{” is viscous stress tensor.



rif) = 2u(Si - %Skk&j)
N ou; aui
i ( ax o )
General incompressible N-S equations
oui _
aXi 0

oui , ,, Oui _ du;
P U 8x,) 8x. TH ox?

4-1 Favre-averaging (density weighted time averaging)

Favre-averaging is sometimes used in compressible flow to separate turbulent fluctuations from the mean-flow.
D=+

Where

~ (HD(t)dt i
the mean part ® = IT P : _r0
QL p

the auxiliary relations
p®" =0 (but®" *# 0), pd = pd = p®
General Favre-averaged continuity equation

opg) , pgU) _ o(pP) , o(PIT) , (PP ui) _0

ot OX; ot OXi OXi
Continuity equation (¢ = 1,¢" = 0):

dp ., 9(pUi)
ot T o =0
Momentum equation (¢ = uj, ¢’ = u;)

o(pt;) N o(pUjT; + &;iP + pUj”Ui” —Tjj)

ot o =0
Energy equation
WD), (s, P + Py + pequ +0, ~Tyy) — 0
Where the density averaged total energy €g is given, €5 = & + Uk2Uk +k
Where the turbulent energy k = uk—zuk
Tij = Tijj + r_ﬂ
ﬁ + Peouu = Cppu; T+ ujpu”u” + %

" "

UJT| = UJTU + UJ T'J + UJTIJ



After simplification,
P, U _,

ot OXi
a(p’aj) n a(/_)ﬁItH +5|JP+ T|Ot) 0
ot OXi
a(gf‘)) a (peoU. +OP 4+ g - u,r}f‘) =0
Where
e atr auj 2 ou
Tllam = 7:U ‘U( I aXIJ 3 an 5'])
T o g 20 OO 2 0Uksy_ 2s
Ty pU Ui = (ax, a3 ox, Oi) T 3Pk

< Yot am turb
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™" = Cepujui = —Cp Pry oOXi y—1 Pry 8xi[ﬁ}
P = (- Dp(es - Tk

4-2 Reynolds averaging
There are three most common perceptions of this term: time averaging, space averaging or ensemble averaging.

A. Time averaging

Time averaging is appropriate when considering a stationary turbulence. That is when the flow does not vary on
the average in time. In such cases time average is defined by:

Fn = lim(& [ fr.ody

B. Space averaging

Space average is appropriate for homogenous turbulence. That is a turbulent flow that on the average does not
vary in any direction. Space average is defined by:

0 = i o0

C. Ensemble average

Ensemble average is the most general aspect of Reynolds average. It should be understood as an average of N
identical experiments. Ensemble average is both

time- and space-dependent. It is defined by:



N

F(rt = lim L3 fur,b)

n=1

Reynolds-Averaged N-S equations
The main idea of Reynolds averaging is to decompose the flow to averaged and fluctuating component
(Reynolds decomposition):

ui =T+ Ui,
P-P+P
r,(JV) = r,(JV) +T,J

Averaged governing equations for incompressible flow:

ol
XiI =0
au;
XiI =0
~ (V)
aul | 67’-'] _ 5
P +U‘ OXj )=- 8x. OXi ( uy)

Where ruj is a re-worked contribution of the fluctuating velocities to the change of the averaged ones, having
the same structure and dimension as the viscous stress tensor.
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Governing equations for curved pipe flow

1 Laminar flow
1.1 Small curvature pipe (Small Dean number: 0 < De < 96) (22
Steady incompressible laminar flow in toroidal coordinate (r,y,6), U,V and W are independent of 6:

&

R

N\

Pir,a,8)

Toroidal coordinate

U%_r+¥g_5_VTZ_RV\ff% N _Q(B)_ [(% 6?;/ - Rfc;ss(ipm//)(a_v ¥_%g_)]
U%—Y+¥g¥ ik F:Nj(r:(s)isnvip -+ al,/( )G Rfirsuulny/)(ﬂ o R
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(1 aW Wcosy )]
r oy - oy " Ryrsiny

When curvature is small: that is a/R is small, terms of order a?/R? are ignored. And we assume

U=uV=vW=A®@%-r%)+w,Plp= Cz+%

Where A and C are constants, and z is the distance (measured long the central line) of any section of the pipe
from a fixed section.

The governing equations become(R 0 Z)
ou 1 oV _
or + = + = r oy =0
_Az(az_rz)Zsmvl :_Q(B)_Li(ﬂ l_la_u)
R orp Foy or I T oy
A’(@*—r®)*cosy _ 1 o (P o (v, v _1au
- R =Ty ) Ve Gar T TGy
AR = (1 TSNV 0y Py @2 L0, 1 2 a2
2Aru (1 R )az (Cz+ p)+v( o2 + 7 ar + 7 2y >)[A@ —T19) + W]



2, A(a? - r?)siny v .0 [A(az—rz)cosw]
or R r oy R

C = —4vA gives the relation between pressure gradient and rate of flow in a circular straight pipe.

Asymptotic solutions for velocities and pressure are function of r and y:
u=u'siny,v=vcosy,w=wsiny,Plp =P siny,

Where u’,v’,w’,P" are function of r only, with boundary conditions: u' =0,v' =0,w =0,P =0 at r = 0.
Therefore,

u = A?siny(a? - r?)(4a? — r?)/288Rv

v = A%2cosy(a? — r?)(4a? — 23a%r? + 7r*)/288Rv

r_ 3Ar /.2 2 Adr 6(a2 2 bnd _ b 2(A6 6 8 8
=20 (as—r —2°__Tl4a°(ac —r%) —-3a*(a* -r a‘(a® -r%) —(a® -r9)/10
W 4R( )+1152Rv2[ ( ) ( ) +a( )= )10]

I — A2(32 _ r2)2 dedv v _u
P/r=A¢a r)/R+vdr(dr+r )

or in non-dimensional form, through defining n = Aa3/v,r = r/a
U/Wo = nasiny (1 —r'2)2(4 —r'2)/288R

VIWo = nacosy (1 —r'2)(4 —23r2 + 4r'4)/288R

3rsiny  n?rsiny

+v(%+

_ _ 2 _ _ 9 /4_ 6
WIWy =(1-r9)[1 AR T TI500R (19-21r“+9r*—r®)
The differential equation to any stream-line is
dr _ Ty _  Rdo dr rdy

U™V ~a@-1)  A-r)@-r9siny  (4-23r2+4r%)cosy
By integration,
secy = kr' (1 —r2)(1—r'2/4)
Where k is an arbitrary constant.

1.2 Small curvature pipe (Median Dean number: 96 < De < 600)!
Dimensionless variables are introduced as: r = ar*,w = v(R/2a%)¥?w*, ¢ = v¢*
Governing equations

o . 1 (00" ow* _ ow*r 09\
VW o oy "o ) =P

W ad)* 0 _ 09Q* 0 *2 bk ik (Qi « OW* cosy* ow*
Vet (e By o By VST = W (siny S+ =5 al,/*)

Ga? / 228 s _ 0% 1_0 1 02
= =24 |ea gyx2_C 4 =L
Where D I V2|_ ) ar*z + r or* + r*z aW*Z
With G = —%g—z( axial pressure gradient is constant)
Introduce w = > " wnCosSNy,¢ = D" ¢asinny,{ = > " Cnsinny (where wn,¢n and ¢, are functions of r
only)
By equating coefficients of cosny, the following equations are obtained (the following dimensionless equations

are without x)

Forn = 0,
dZWo 1 dwo



Where fo(r) = %[wa M@m dWrm +y medg;rm] -D

m=1 d m=1
Forn>1
dj:—,\én + % d(\j,\,lvn — —5Wn = fa(r)
3?,12 % d(ﬁn - rr]_jfﬁn = Cn
R L
Where fn(r) = % > mem dsn m_ L1y msmd%%

w d d
- _% Zm:—oo MCm ¢n : 1 Z _ M gn - Z — dj_lin(sn—(mﬂ) — Sn-(m-1))

+ % Z::_Oo msm(snf(mﬂ) + Snf(mfl))

We have following relations for above two equations

Sm = Wn
¢-m = —¢m (M > 0)
{m =—Cm (M >0)
Sm = W_m (M < 0)
Sg = 2Wpo

Solutions

Wo

I 1(5 In&)fo(£)dz + Inr [ &fo(£)dé

Wy = L [ M ()de + Lo J EM@dE - T [T emin(©)de

fo = o= [ SRS - T [ emig, @)d&(usmg the fact that | £"1¢n(£)d2 = 0)

n = (””)r o emar, (5>d5 L[ en R (e + L1 e miFy@)de - D |7 ey (€

1.3 Small curvature pipe (large Dean number: 600 < De < 5000)!
Introduce the dimensionless variables,

_ * _ * _ * _ 3\ 1/2\ps% — * *zia(b* *=_a¢*
r=ar*,u=vu*/ayv=w*aw = v(Ri2a’)"w*,¢ = vp*,u = 51//*’\/ ar

Thus the dimensionless governing equations for steady incompressible laminar flow are (based on Dean’s
equation):
v*2¢* = _O*
0" ow* _ ow* 99"
EYAVYE .
VW + (G oyt o ey - P
99" 0Q* _ O 8«/5* ow* _ COSy™ ow*
*2 () * *
VRO T (G ST~ G ) = WS Sl + = G0

Where v*2 = gr—i + ri* 6?* + r12 882*2 and D = Ga®(2a/R)Y?/(uv)

with G = Fle gg (‘axial pressure gradient is constant)

Boundary conditions:



Q) w* = ¢* = d)* =0atr-=1

(2) Symmetric about v* = 0,7 from which it follows that, for 0 < y* < 7,
¢*(r* l//*) = ¢*(r* V/*)IW*(r*!W*) = _W*(r*!"/’*)!Q*(r*!V/*) = —Q*(r*'l//*)

3) ¢* = Q* =0, gW* — Owhen y* = 0,7

2 Curvature-corrected turbulence models

2.1 Linear eddy-viscosity models

Launder (1977), Howard (1980), Leschziner and Rodi (1981)1), Gooray (1985), Park and Chung (1989)
attempted to incorporate rotation and curvature corrections into LEVM. However, they were based on ad hoc
modifications and did not typically satisfy mathematical invariance principles.

2.1.1 Linear k — e turbulence model + wall function (6]
Steady incompressible turbulent flow in toroidal coordinate (r,0, v)
The governing differential equations in the central region of the flow (fully turbulent flows)

oU, | Uy Ursiny 10Uy U,cosy
or T +R+rsin1//+|’ Oy +R+rsim//_
aur Ug 0U, UE 10U, Uicosd.  op oy 1 0tw  Te . T Tww
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p(UIr + = 89+ R oy ) = F oy (GG 8r) ( cosO 895|n0)+ 239(06 8(9)+ClkG
Shearstress
Tij = (t + p)Djj
Where

wi is the molecular viscosity of the fluid (assumed constant throughtout the pipe cross-section).
ut = C,pk?le

{Dj;} is the deoformation tensor,

Expending Dj; in the (r, y,0) coordinate

oU,

or’

Trg = u( ?gé - Ur" + agre ) = Tor,

T = 2/1
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+ Uy

R Raw) = Tl[/@;

Uy 1 _ :
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With constants: C, = 0.09,C1 = 1.47,C2 =1.92,0¢ = 1.0,0, = 1.3
Wall regions (low Reynolds number of turbulence pk?1/u, where | = k3?/¢)
Point P is located sufficiently far from the wall for the local turbulent Reynolds number (pk21/u)p to be much
greater that unity. It is then assumed that a logrithmic velocity profile prevails in the region between the wall and
the node P, the expression for the velocity being
Near-wall shear stress
Cl/4k1/2U

In(Epr1’4k1’2/u|)
Where the subscript P indicates values at grid node P,
yp is the distance of P from the wall,
k and E are the log-law constants.
Near-wall shear stress kinetic dissipation rate (the length scale varies linearly with the distance from the wall)
€p = C3/4k3/2/1(‘yp
Where kp represents the turbulent kinetic energy near the wall and is calculated from the regular balance
equation, the diffusion of energy being set equal to zero. The dissipation term in the Kinetic-energy equation is
assigned an average value over the control volume for the node near the wall,

p€ _ pJ'yN fdy C3/4k3/2 J'ZN %ydy

aug

2.1.2 Two-layer linear k — e model(**]

A linear k — e model with a two-layer near wall treatment. k and € equations are solved in far field. The two-layer
type of near-wall treatment was included in the new turbulence model to allow the integration of the flow to the
wall. The model employs the one equation model of Wolfstein (1969) in the near wall-layer zone. The
transportation equation for k is solved within the wall-layer, while € is calculated via an empirical correlation
based local wall distance.

Turbulent kinetic energy transport equation

ok _ 1T\ ok au. - 27k Ui
at aXJ ( UJ ) aXJ [(‘U Prk ) aXJ ] [Z‘U (SIJ 5IJ ) ] aXJ pe

Turbulent d|55|pat|on rate transport equation

9pe) e Uiy _ 2 s 10U g2
ot GXJ ——(pUje) = 8XJ [(.LH' Pr, ) ox; ]+Cat k [2u7(Sij - 51 x| ) 3 pkaij] ox; —C2p- K

Turbulent viscosity



2
Hr = Cul_JkT

Turbulent viscosity coefficient
Ko + KeCu(3K)2 + KsC,i(3K) + Kac2(SK)?
Ks + KBC#(STK)Z + K7C;21(STK)4 i KS(WTK)Z

Where
S = ZSijSij ,W = 2WijWij
Modified flow rotation term

oz - 3o

Where the relative fluid rotation rate magnitude computed in an inertial frame is:
Q= ZQiJQij

Turbulent stress (Boussinesq’s assumption)

puity = 2018y — 2.8y (ur 2oL + k)

Model turbulent Iength scale

3/2

Lt = min(—=£— CLy’k )
Near-wall turbulent dissipation rate (when CLy IS minimum)

k3/2
g =

I
Where I, = CLy[1 L]

¢ y is minimum)

pr =C 1,

Where Rey = ‘/Ey

Model constants

Prk = 1.0,Pr£ = 1.19,C81 = 1.44,C82 = 1.92,K1 = 066, Kz = 39, K3 = 1.0,K4 = 5.3,K5 = 2.9,
Ke = 17.0,K7 = 10.0,Kg = 3.84,C4 = 0.4,C. = 2.495,A, = 4.99,A, = 25.0

2.1.3 SA model with rotation and/or curvature effects (SARC)!®!

SA turbulence model is a one-equation model that was presented by Spalart and Allmaras in 1992.
Curvature-corrected SA model is based on a Galilean invariant measure of turbulence for sensitizing eddy
viscosity turbulence models to the effects of streamline curvature. The equations for the SARC turbulence model
are the same as those for the standard SA model, except that the production term is multiplied by a rotation
function fi1.

In SA model/SARC model, a single partial differential transport equation is solved at each time step.

Turbulent viscosity transportation equation

ﬁ(g_tv) +aixj(PUiV) Gy + 5[ {(u+pV) 5+ Coap( av)] Yy +Sy

Where



Gy is the production of turbulent viscosity,

Yy is the destruction of turbulent viscosity,

Sy is a source term, v is the molecular kinematic viscosity,
o, and Cy; are calibrated constants.

Turbulent viscosity

ur = pVf,1.

Where f,; is a viscous damping function defined as
A%

. (37)

()% +Cly
Production of turbulent viscosity

~ V g Wv
Gv = CopV[S + 22 (1 1 +fvlv/v)

]frl

Where

d is the distance from the wall,

S is the scalar measure of the deformation tensor,
Kk is von Karman constant (x = 0.41).

fir = (L+Cn) 72— [1 - Cratan*(CreT)] —Cay,
e S o 2QiSjc  DSjj
With r =T = D? (¢ )

Where 82 = ZSijSij,Q2 = ZQijQij,D2 = %(QZ +82),Cr1 = l,Crz = 12,Cr3 =1
Turbulent destruction
Yy = c:wlpfw(%)2

1+Cds qu v
16,9 = r+ Cuo(ré —r),r = ,
g6 + Cts ! S+ ZVdZ fu2)K2dl2
K

Where fy, = g

Cwi, Cw2 and Cy3 are calibrated constants.

2.2 Non-linear eddy-viscosity models (NLEVM)

Some models have been explicitly sensitized to rotation and curvature, resulting in further improvement to their
predictive capability. Girimaji (1997), Rumsey and Gatski (2001), Fu and Qian (2002), Wallin and Johansson
(2002), Hellsten (2002), Grunderstam (2005), Wang and Thangam (2006). The curvature corrections in thes
recent models have been based primarily on mathematically conssitent application of invariance and frame
indifference priciples, in contrast to the ad hoc modifications found in eariler attempts.

2.2.1 Corrected nonliear v2 — f model(®!

Durbin developed the v2—f model to be used in flows in which near-wall turbulence is of significant
importance, specifically flows with separation, recirculation or heat transfer. The model solves four transport
equations, those for k, &, v? (velocity scale) and f (elliptic relaxation factor).

Turbulent kinetic energy transportation equation



oK) . 0 LUk = P — 0 ey ok
Turbulent energy diffusion rate transportation equation

9pe) 0 CiPk — pCeos
ot ax, ax; PUie) = OXj [t Pre )4 OXj "k T
Turbulent velocity scale transportation equation

oapv?) | 0pVU) e e o av2
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Turbulent eIIiptic relaxation factor transportation equatlon
of? P\

LG_XJ —f= (Cl - 1)(— - —) Co—- oK

Where C; = 1.6,C, = 0.3

the production of turbulence kinetic energy Py due to mean flow velocity gradients is
Py = 2u:S?

Reynold stress model

—puit;/p = %&jk - 2C;1V2T18ij - VTZ[CZZ(Sika:j — SikWii) — Cria(SikSkj — |52|5ij)]
Turbulence viscosity coefficient
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Where

a1 = 0'055\/1:—1&2 = %fliafﬂ = %fl,all = %fl,QS = 4—10,

(- )/( )o0 ,with (L= )O0 = 0.376

Turbulence time scale

a

The turbulence time scale can not be less than the Kolmogoroff scale DE

T= max[k Cq /—]

Where Cr = 6
Turbulence length scale
The turbulence length scale L can not be less than Kolmogoroff scase (v3/g) 4.

L - comax( X2 ¢ ( )1/4]
Where C. = 0.23,C,, = 60
Turbulence viscosity
Ht = pC‘u\?T
Calibrated constants
C:l = C‘uF,
2
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where Qjj = —eix@k, @i = 10 + 121153 + 6MT1SuSy SpiSpiepg;, 11 = trace(S?), Tz = trace(S?),

2113 — 12113
() is material derivative,
The objective vorticity tensor Qj is
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