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Abstract of the Dissertation

The Fluid Dynamics of Mercury Target Delivery and Exhaust for A Muon

Collider Particle Production System

by

Yan Zhan

Doctor of Philosophy

in

Mechanical Engineering

Stony Brook University

2014

Liquid mercury has been investigated as a potential high-Z target for the production of

Muon particles for the Muon Collider project. This thesis investigates the dynamics of

mercury flow in a design of the target delivery system, with the objective of determining

pipe configurations that yield weak turbulence intensity at the exit of the pipe. Curved

circular pipes with various half-bend angles, with/without nozzles in the exit region, and

with/without welds on the pipe inner surface are studied. Theoretical analysis is carried

out for steady laminar incompressible flow, whereby the terms representing curvature effects

are examined. Subsequent simulations of the turbulent flow regime in the pipes are based

on a realizable k − ε Reynolds-averaged Navier-Stokes (RANS) equations approach. The

simulations in this thesis have been based on the FLUENT commercial computational fluid

dynamics (CFD) codes. The effects of turning angles, presence of a nozzle, and presence of

a weld (on the inner surface of the pipes) on momentum thickness and turbulence intensity

at the exit of the curved pipe are discussed, as are the implications for the target delivery

pipe designs. It was found that the pressure loss from inlet to outlet is nearly the same for

all pipes. Nozzle reduces the turbulence intensity of the flow while a weld increases it.
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In order to locate the free surface of the mercury jet exhausting from the pipe into

air, a coupled level set (LS) and volume of fluid (VOF) method (CLSVOF) has been ap-

plied. When we started this project, FLUENT did not support this approach. Therefore

we developed, validated, and employed a coupled VOF and LS method that uses high-order

weighted essentially non-oscillatory (WENO) schemes for the re-initialization equation in the

LS method. Several successful validations of the developed CLSVOF code are presented in

this dissertation. The flow conditions obtained at the pipe outlet have been used as the inlet

conditions for the free-jet simulations. The dynamics of mercury jet flow are determined by

the combined effects of turning angles and weld.

iv



Contents

List of Figures ix

List of Tables xxi

List of Abbreviations xxi

List of symbols xxiv

List of Superscripts xxviii

List of Subscripts xxix

Acknowledgements xxx

1 Introduction 1

1.1 Mercury Target Issues in the Muon Collider Project . . . . . . . . . . . . . . 1

1.2 Motivations of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Review of Flow in Curved Pipes . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Review of Turbulent Flows through Pipes with Rough Inner Surfaces . . . . 4

1.4.1 Turbulent Flows through Pipes with Corrugations . . . . . . . . . . . 6

1.4.2 Turbulent Flows in Pipes with Constrictions . . . . . . . . . . . . . . 8

1.5 Review of Multiphase Models . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Objectives of the Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

v



2 Governing Equations and Boundary Conditions 11

2.1 Governing Equations for Laminar Flow in Curved Pipes . . . . . . . . . . . . 11

2.2 Governing Equations for Turbulent Flow . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Continuity and Momentum Equations . . . . . . . . . . . . . . . . . 16

2.2.2 Realizable k − ε model . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Level Set Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Reynolds-averaged level set equation . . . . . . . . . . . . . . . . . . 20

2.3.2 Re-initialization equation . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Volume of Fluid Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Coupling Level Set and Volume of Fluid . . . . . . . . . . . . . . . . . . . . 24

2.6 Continuum Surface Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Numerical Procedure 26

3.1 Discretization of The Continuity Equation . . . . . . . . . . . . . . . . . . . 26

3.1.1 Temporal Discretization . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Spatial Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Discretization of The Momentum Equation . . . . . . . . . . . . . . . . . . . 30

3.2.1 Temporal Discretization . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Spatial Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.3 Pressure-Velocity Coupling SIMPLE (Semi Implicit Method for Pres-

sure Linked Equations) Scheme . . . . . . . . . . . . . . . . . . . . . 32

3.3 Discretization of k and ε Equations . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Temporal Distretization . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Spatial Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Numerical Procedure for the Level Set Method . . . . . . . . . . . . . . . . . 37

3.4.1 UDFs in ANSYS FLUENT . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 UDF’s for the unsteady term in level set equation . . . . . . . . . . . 39

vi



3.4.3 UDF’s for the flux term in level set equation . . . . . . . . . . . . . . 39

3.4.4 UDF’s for the diffusion term in level set equation . . . . . . . . . . . 41

3.4.5 Discretization of Re-initialization Equation . . . . . . . . . . . . . . . 41

3.5 Discretization of Volume of Fluid Equation . . . . . . . . . . . . . . . . . . . 48

3.6 Coupling Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6.1 Reconstruction of level set values with planes in partial cells . . . . . 48

3.6.2 Correct level set values with volume fractions . . . . . . . . . . . . . 50

3.7 Surface Tension Force for Multiphase Flow . . . . . . . . . . . . . . . . . . . 51

4 Numerical Verification and Validation 55

4.1 Understanding the Secondary Flows in Curved Pipes . . . . . . . . . . . . . 55

4.2 Realizable k − ε Model For Flow in Curved Pipes . . . . . . . . . . . . . . . 59

4.3 Numerical Validations of the Developed CLSVOF Model . . . . . . . . . . . 59

4.3.1 Droplet movement due to a constant velocity field . . . . . . . . . . . 61

4.3.2 Droplet deformation due to a vortex velocity field . . . . . . . . . . . 61

4.4 Two Dimensional Jet Simulations Based on FLUENT Code . . . . . . . . . . 73

4.4.1 Two Dimensional Laminar Round Jet Flow . . . . . . . . . . . . . . . 73

4.4.2 Two Dimensional Laminar Plane Jet Flow . . . . . . . . . . . . . . . 75

4.4.3 Two Dimensional Turbulent Jet Flow . . . . . . . . . . . . . . . . . . 82

5 Results 90

5.1 Mercury Internal Flow in A Curved Pipe Without A Weld . . . . . . . . . . 90

5.1.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1.2 Axial velocity distribution . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1.3 Momentum thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1.4 Turbulence intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Mercury Internal Flow in A Curved Pipe With A Weld . . . . . . . . . . . . 105

vii



5.2.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.2 Computation of the pipe simulation with an azimuthal complete weld 105

5.2.3 Computation of the pipe simulation with an azimuthal incomplete weld107

5.2.4 Study On the Effects of Bend And Weld . . . . . . . . . . . . . . . . 116

5.3 Mercury Turbulent Jet Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3.1 Two Dimensional Mercury Turbulent Jet Flow . . . . . . . . . . . . . 131

5.3.2 Three Dimensional Mercury Turbulent Jet Flow . . . . . . . . . . . . 132

5.3.3 Least Squares Fitting of Ellipses . . . . . . . . . . . . . . . . . . . . . 139

6 Concluding Remarks 155

Bibliography 158

viii



List of Figures

1.1 Sectional view of the target supple pipe of the MERIT experiment. The

mercury jet generated at the end of the nozzle is on top of the nominal beam

trajectory. Both mercury jet and proton beam move from right to left . . . . 2

1.2 Coordinates along a curved pipe . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Configurations of pipes investigated: without nozzles for ϕ1/ϕ2 of (a-1) 0◦/0◦

(b-1) 30◦/30◦ (c-1) 60◦/60◦ (d-1) 90◦/90◦; with nozzles for ϕ1/ϕ2 of (a-2) 0◦/0◦

(b-2) 30◦/30◦ (c-3) 60◦/60◦ (d-2) 90◦/90◦ . . . . . . . . . . . . . . . . . . . . 5

2.1 Curvilinear coordinates for the periodically-curved pipe y = b sin(nx) . . . . 13

2.2 Fully developed normalized velocity profile W ∗(r∗) at pipe inlet . . . . . . . 20

2.3 (a) the exact interface for a circular arc over a square grid; Interface recon-

structed by the scheme of (b) Simple Line Interface Calculation (SLIC) (c)

Piecewise Linear Interface Calculation (PLIC) . . . . . . . . . . . . . . . . . 23

2.4 Algorithm of CLSVOF method used in this thesis . . . . . . . . . . . . . . . 24

3.1 Two dimensional control volume for continuity equation . . . . . . . . . . . . 28

3.2 cell p and its adjacent cells nb, neighboring the cell p . . . . . . . . . . . . . 32

3.3 The three substencils: (a) the left-biased stencil; (b) the right-biased stencil . 54

3.4 Solution procedure for the pressure-based segregated/coupled solver . . . . . 54

4.1 Contour plots of (a) u∗, (b) v∗, (c)D∗r , and (d)D∗θ at x = 60 of the periodically-

curved pipe (Re = 1000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

ix



4.2 The sketch of a curved pipe with a 90◦ bend. CV implies “convex (inner)

side”, CC is “concave (outer) side”, (xc, yc) denotes the curvature center and

R is the radius of curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Longitudinal distribution of static pressure at the convex (θ = −90◦), concave

(θ = 90◦) and bottom (θ = 0◦) sides of the 90◦ bend (Re = 60, 000) . . . . . 60

4.4 Movement of circle of fluid under the velocity (U = 1,V = 0) in the developed

CLSVOF method and a grid of 128 ∗ 128 at (a) t = 0s, (b) t = 0.25s, (c)

t = 0.5s, and (d)t = 0.75s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Movement of circle of fluid under the velocity (U = 0,V = −1) in the devel-

oped CLSVOF method and a grid of 128 ∗ 128 at (a) t = 0s, (b) t = 0.25s,

(c) t = 0.5s, and (d)t = 0.75s . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Movement of circle of fluid under the velocity (U = 1,V = −1) in the devel-

oped CLSVOF method and a grid of 128 ∗ 128 at (a) t = 0s, (b) t = 0.25s,

(c) t = 0.5s, and (d)t = 0.75s . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 Deformation of circle of fluid under the vortex field of ψ(x,y)= 1
π

sin2[πx]sin2[πy]cos(πt/2)

in the developed CLSVOF method and a grid of 128 ∗ 128 at (a) t = 0s (b)

t = 1s (c) t = 2s (d) enlarged comparison between (a) and (c) . . . . . . . . 66

4.8 Deformation of circle of fluid under the vortex field of ψ(x,y)= 1
π

sin2[πx]sin2[πy]cos(πt/2)

in the developed CLSVOF method and a grid of 256 ∗ 256 at (a) t = 0s (b)

t = 1s (c) t = 2s (d) enlarged comparison between (a) and (c) . . . . . . . . 66

4.9 Deformation of circle of fluid under the vortex field of ψ(x,y)= 1
π

sin2[πx]sin2[πy]cos(πt/2)

in the developed CLSVOF method and a grid of 512 ∗ 512 at (a) t = 0s (b)

t = 1s (c) t = 2s (d) enlarged comparison between (a) and (c) . . . . . . . . 67

4.10 Deformation of circle of fluid under the vortex field of ψ(x,y)= 1
π

sin2[πx]sin2[πy]cos(πt/6)

in the developed CLSVOF method and a grid of 128 ∗ 128 at (a) t = 0s (b)

t = 3s (c) t = 6s (d) enlarged comparison between (a) and (c) . . . . . . . . 67

x



4.11 Deformation of circle of fluid under the vortex field of ψ(x,y)= 1
π

sin2[πx]sin2[πy]cos(πt/6)

in the developed CLSVOF method and a grid of 256 ∗ 256 at (a) t = 0s (b)

t = 3s (c) t = 6s (d) enlarged comparison between (a) and (c) . . . . . . . . 68

4.12 Deformation of circle of fluid under the vortex field of ψ(x,y)= 1
π

sin2[πx]sin2[πy]cos(πt/6)

in the developed CLSVOF method and a grid of 512 ∗ 512 at (a) t = 0s (b)

t = 3s (c) t = 6s (d) enlarged comparison between (a) and (c) . . . . . . . . 68

4.13 Deformation of circle of fluid under the vortex field of ψ(x,y)= 1
π

sin2[πx]sin2[πy]cos(πt/6)

in the CLSVOF method in ANSYS FLUENT and a grid of 128 ∗ 128 at (a)

t = 0s (b) t = 3s (c) t = 6s (d) enlarged comparison between (a) and (c) . . 69

4.14 Deformation of circle of fluid under the vortex field of ψ(x,y)= 1
π

sin2[πx]sin2[πy]cos(πt/6)

in the CLSVOF method in ANSYS FLUENT and a grid of 256 ∗ 256 at (a)

t = 0s (b) t = 3s (c) t = 6s (d) enlarged comparison between (a) and (c) . . 69

4.15 Deformation of circle of fluid under the vortex field of ψ(x,y)= 1
π

sin2[πx]sin2[πy]cos(πt/6)

in the CLSVOF method in ANSYS FLUENT and a grid of 512 ∗ 512 at (a)

t = 0s (b) t = 3s (c) t = 6s (d) enlarged comparison between (a) and (c) . . 70

4.16 Deformation of circle of fluid under the vortex field of ψ(x,y)= 1
π

sin2[πx]sin2[πy]cos(πt/6)

from the Nichita’s simulation and a grid of 128 ∗ 128 at (a) t = 0s (b) t = 3s

(c) t = 6s (d) enlarged comparison between (a) and (c) . . . . . . . . . . . . 70

4.17 Deformation of circle of fluid under the vortex field of ψ(x,y)= 1
π

sin2[πx]sin2[πy]cos(πt/6)

from the Nichita’s simulation and a grid of 256 ∗ 256 at (a) t = 0s (b) t = 3s

(c) t = 6s (d) enlarged comparison between (a) and (c) . . . . . . . . . . . . 71

4.18 Deformation of circle of fluid under the vortex field of ψ(x,y)= 1
π

sin2[πx]sin2[πy]cos(πt/6)

from the Nichita’s simulation and a grid of 512 ∗ 512 at (a) t = 0s (b) t = 3s

(c) t = 6s (d) enlarged comparison between (a) and (c) . . . . . . . . . . . . 71

4.19 Deformation of circle of fluid under the vortex field of ψ(x,y)= 1
π

sin2[πx]sin2[πy]cos(πt/12)

in the developed CLSVOF method and a grid of 128 ∗ 128 at (a) t = 0s (b)

t = 6s (c) t = 12s (d) enlarged comparison between (a) and (c) . . . . . . . 72

xi



4.20 Deformation of circle of fluid under the vortex field of ψ(x,y)= 1
π

sin2[πx]sin2[πy]cos(πt/12)

in the developed CLSVOF method and a grid of 256 ∗ 256 at (a) t = 0s (b)

t = 6s (c) t = 12s (d) enlarged comparison between (a) and (c) . . . . . . . 72

4.21 Deformation of circle of fluid under the vortex field of ψ(x,y)= 1
π

sin2[πx]sin2[πy]cos(πt/12)

in the developed CLSVOF method and a grid of 512 ∗ 512 at (a) t = 0s (b)

t = 6s (c) t = 12s (d) enlarged comparison between (a) and (c) . . . . . . . 73

4.22 Typical free 2D laminar round jet streamline pattern . . . . . . . . . . . . . 74

4.23 Boundary conditions settings for 2D laminar round jet . . . . . . . . . . . . 75

4.24 Center line velocity of the 2D round jet changes with the distance . . . . . . 75

4.25 Radial distribution of the mean stream velocity of the 2D round jet at (a)

x/d = 10, (b)x/d = 30, (c) x/d = 50, (d) x/d = 70, and (e) x/d = 90.

Note that u is normalized by umax ( umax =max(u)) and radius r by jet inlet

diameter d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.26 Half width of the 2D round jet changes with the distance. Note that r1/2 and

distance x are normalized by jet inlet diameter d. . . . . . . . . . . . . . . . 76

4.27 2D round jet self-similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.28 Momentum thickness of 2D round jet changes with distance. Note that θ and

distance x are normalized by jet inlet diameter d. . . . . . . . . . . . . . . . 77

4.29 Typical free 2D laminar plane jet streamline pattern . . . . . . . . . . . . . . 77

4.30 Boundary conditions settings for 2D laminar plane jet . . . . . . . . . . . . . 79

4.31 Center line velocity of the 2D plane jet changes with the distance . . . . . . 79

4.32 Radial distribution of the mean stream velocity of the 2D plane jet at (a)

x/d = 10, (b)x/d = 30, (c) x/d = 50, (d) x/d = 70, and (e) x/d = 90.

Note that u is normalized by umax ( umax =max(u)) and radius r by jet inlet

diameter d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.33 Half width of the 2D plane jet changes with the distance. Note that r1/2 and

distance x are normalized by jet inlet diameter d. . . . . . . . . . . . . . . . 81

xii



4.34 2D plane jet self-similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.35 Momentum thickness of 2D round jet changes with distance. Note that /theta

and distance x are normalized by jet inlet diameter d. . . . . . . . . . . . . . 81

4.36 The boundary conditions for the 2D turbulent jet simulations . . . . . . . . 82

4.37 The contour of volume of fraction of liquid for the 3-jet-diameter simulation

in VOF method of FLUENT code. Note 3-jet-diameter simulation means the

width of the computational domain is 3 times the jet inlet diameter. . . . . . 84

4.38 The contour of axial velocity for the 3-jet-diameter simulation in VOF method

of FLUENT code. Note 3-jet-diameter simulation means the width of the

computational domain is 3 times the jet inlet diameter. . . . . . . . . . . . . 85

4.39 The contour of Z vorticity for the implicit LES 3-jet-diameter simulation using

VOF multiphase model. Note 3-jet-diameter simulation means the half width

of the computational domain is 3 times the jet inlet diameter. . . . . . . . . 85

4.40 The contour of volume of fraction of liquid for the implicit LES 3-jet-diameter

simulation using CLSVOF multiphase model. Note 3-jet-diameter simulation

means the half width of the computational domain is 3 times the jet inlet

diameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.41 The contour of axial velocity for the implicit LES 3-jet-diameter simulation

using CLSVOF multiphase model. Note 3-jet-diameter simulation means the

half width of the computational domain is 3 times the jet inlet diameter. . . 86

4.42 The contour of Z vorticity for the implicit LES 3-jet-diameter simulation using

CLSVOF multiphase model. Note 3-jet-diameter simulation means the half

width of the computational domain is 3 times the jet inlet diameter. . . . . . 86

4.43 The contour of volume of fraction of liquid for the implicit LES 5-jet-diameter

simulation using VOF multiphase model. Note 5-jet-diameter simulation

means the half width of the computational domain is 5 times the jet inlet

diameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xiii



4.44 The contour of axial velocity for implicit LES 5-jet-diameter simulation using

VOF multiphase model. Note 5-jet-diameter simulation means the half width

of the computational domain is 3 times the jet inlet diameter. . . . . . . . . 87

4.45 The contour of Z vorticity for the implicit LES 5-jet-diameter simulation using

VOF multiphase model. Note 5-jet-diameter simulation means the half width

of the computational domain is 5 times the jet inlet diameter. . . . . . . . . 87

4.46 The contour of volume of fraction of liquid for the implicit LES 5-jet-diameter

simulation using CLSVOF multiphase model. Note 5-jet-diameter simulation

means the half width of the computational domain is 5 times the jet inlet

diameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.47 The contour of axial velocity for the implicit LES 5-jet-diameter simulation

using CLSVOF multiphase model. Note 5-jet-diameter simulation means the

half width of the computational domain is 5 times the jet inlet diameter. . . 88

4.48 The contour of Z vorticity for the implicit LES 5-jet-diameter simulation using

CLSVOF multiphase model. Note 5-jet-diameter simulation means the half

width of the computational domain is 5 times the jet inlet diameter. . . . . . 88

4.49 Surface breakup regime map for turbulent liquid jets in still gases when aero-

dynamic effects are small (liquid/gas density ratios are larger than 500) . . . 89

5.1 Radial distribution of the U∗ as a function of location along the 0◦/0◦ pipe . 91

5.2 Radial distribution of U∗ as a function of location along the 30◦/30◦ pipe . . 92

5.3 Radial distribution of U∗ as a function of location along the 60◦/60◦ pipe . . 92

5.4 Radial distribution of U∗ as a function of location along the 90◦/90◦ pipe . . 92

5.5 Comparison of radial distribution of U∗ at the same location along the 0◦/0◦

pipe without (square symbols) and with (delta symbols) a nozzle: (a)s = 0−

(b)s = 4.032 (c)s = 8.3375 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xiv



5.6 Comparison of radial distribution of U∗ at the same location along the 30◦/30◦

pipe without (square symbols) and with (delta symbols) a nozzle: (a)s = 0−

(b)ϕ1 = 30◦ (c)ϕ2 = 30◦ (d)s = 4.032 (e)s = 8.3375 . . . . . . . . . . . . . . 95

5.7 Comparison of radial distribution of U∗ at the same location along the 60◦/60◦

pipe without (square symbols) and with (delta symbols) a nozzle: (a)s = 0−

(b)ϕ1 = 60◦ (c)ϕ2 = 60◦ (d)s = 4.032 (e)s = 8.3375 . . . . . . . . . . . . . . 96

5.8 Comparison of radial distribution of U∗ at the same location along the 90◦/90◦

pipe without (square symbols) and with (delta symbols) a nozzle: (a)s = 0−

(b)ϕ1 = 30◦ (c)ϕ1 = 60◦ (d)ϕ1 = 90◦ (e)ϕ2 = 0◦ . . . . . . . . . . . . . . . . 97

5.9 Comparison of radial distribution of U∗ at the same location along the 90◦/90◦

pipe without (rectangular symbols) and with (triangular symbols) a nozzle:

(f)ϕ2 = 90◦ (f)s = 4.032 (g)s = 8.3375 . . . . . . . . . . . . . . . . . . . . . 98

5.10 The contour of U∗ as function of location along the 90◦/90◦ without a nozzle 99

5.11 The contour of U∗ as function of location along the 90◦/90◦ with a nozzle . . 100

5.12 Momentum thickness distribution at the exit plane of pipes for turning angles

of: (a)0◦/0◦ (b)30◦/30◦ (c)60◦/60◦ (d)90◦/90◦. These pipes do not have noz-

zles and θ = 180◦, 0◦ correspond to the convex and concave sides of the pipes,

respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.13 Momentum thickness distribution at the exit plane of pipes for turning angles

of: (a)0◦/0◦ (b)30◦/30◦ (c)60◦/60◦ (d)90◦/90◦. These pipes have nozzles and

θ = 180◦, 0◦ correspond to the convex and concave sides of the pipes, respectively102

5.14 The horizontal distribution of turbulence intensity at the exit plane. Sub-

scripts “with” and “without” denote presence or absence of a nozzle at pipe

exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.15 (a) Location of the studied bead in the 90◦/90◦ pipe (b) Dimension of the

semicircle bead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.16 Mesh independence check for the pipe with an azimuthally symmetric bead . 107

xv



5.17 Comparison of turbulence intensity between the pipe without a weld and the

pipe with an azimuthally symmetric weld . . . . . . . . . . . . . . . . . . . . 108

5.18 The 90◦/90◦ pipe with an azimuthally asymmetric 30◦ bead/weld . . . . . . 108

5.19 The distribution of wall shear stress, turbulent kinetic energy, turbulent dis-

sipation rate, mean axial velocity, and friction velocity along the top line on

the pipe wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.20 The distribution of wall shear stress, turbulent kinetic energy, turbulent dis-

sipation rate, mean axial velocity, and friction velocity along the bottom line

on the pipe wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.21 The locations of top and bottom lines on the pipe wall . . . . . . . . . . . . 113

5.22 The distribution of wall shear stress, turbulent kinetic energy, turbulent dis-

sipation rate, and friction velocity along the constant Z line across the weld

center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.23 The distribution of wall shear stress, turbulent kinetic energy, turbulent dis-

sipation rate, and friction velocity along the constant Y line across the weld

center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.24 The locations of top and bottom lines on the pipe wall crossing the weld center115

5.25 Distribution of k at the pipe exit when grid number is (a) 0.7 million (b) 3

million (c) 5 million (d)16 million . . . . . . . . . . . . . . . . . . . . . . . . 116

5.26 Distribution of δθ at the pipe exit when grid number is (a) 0.7 million (b) 3

million (c) 5 million (d)16 million . . . . . . . . . . . . . . . . . . . . . . . . 117

5.27 Locations of two constant Z planes in the vicinity of the 30◦ weld . . . . . . 117

5.28 Distribution of k on the plane of z = 0.0430405 when grid number is (a) 0.7

million (b) 3 million (c) 5 million (d)16 million . . . . . . . . . . . . . . . . . 118

5.29 Distribution of k on the plane of z = 0.0380405 when grid number is (a) 0.7

million (b) 3 million (c) 5 million (d)16 million . . . . . . . . . . . . . . . . . 118

xvi



5.30 Distribution of δθ on the plane of z = 0.0430405 when grid number is (a) 0.7

million (b) 3 million (c) 5 million (d)16 million . . . . . . . . . . . . . . . . . 119

5.31 Distribution of δθ on the plane of z = 0.0380405 when grid number is (a) 0.7

million (b) 3 million (c) 5 million (d)16 million . . . . . . . . . . . . . . . . . 119

5.32 Center line and line along the wall (over the weld) of the pipe (a) straight

pipe without a weld, (b) 90◦/90◦ pipe without a weld, and (c) 90◦/90◦ pipe

with a 30◦ weld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.33 Static pressure changes along the center line (a) from inlet to outlet of of the

three studied pipes and (b) enlarged plot near the weld location (weld centers

at s = 12.482). “CL_ 0” is the center line along the straight pipe without a

weld, “CL_ 90” is the center line along the 90◦/90◦ pipe without a weld, and

“CL_ 90+weld” is the center line along the 90◦/90◦ pipe with a 30◦ weld . . 121

5.34 Static pressure changes along the line on the wall (a) from inlet to outlet of

of the three studied pipes and (b) enlarged plot near the weld location (weld

centers at s = 12.482). “TL_ 0” is the line along the wall of the straight

pipe without a weld, “TL_ 90” is the line along the wall of the 90◦/90◦ pipe

without a weld, and “TL_ 90+weld” is the line along wall of the 90◦/90◦ pipe

with a 30◦ weld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.35 Wall shear stress changes along the line on the wall from inlet to outlet of

of the three studied pipes. “TL_ 0” is the line along the wall of the straight

pipe without a weld, “TL_ 90” is the line along the wall of the 90◦/90◦ pipe

without a weld, and “TL_9 0+weld” is the line along wall of the 90◦/90◦ pipe

with a 30◦ weld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.36 Planes at s = 12.478, s = 12.482, s = 12.601, and the exit (s = 17.892). (a)

y− z view of the plane locations, (b) default view of the plane locations, and

(c) enlarged view of the plane locations in the vicinity of a weld . . . . . . . 124

xvii



5.37 Contour of axial velocity for the straight pipe without a weld at (a)s = 12.478,

(b) s = 12.482, (c) s = 12.601, and (d) exit . . . . . . . . . . . . . . . . . . . 125

5.38 Contour of axial velocity for the 90◦/90◦ pipe without a weld at (a)s = 12.478,

(b) s = 12.482, (c) s = 12.601, and (d) exit . . . . . . . . . . . . . . . . . . . 125

5.39 Contour of axial velocity for the 90◦/90◦ pipe with a 30◦ weld at (a)s = 12.478,

(b) s = 12.482, (c) s = 12.601, and (d) exit . . . . . . . . . . . . . . . . . . . 126

5.40 Plot of momentum thickness for the straight pipe without a weld at (a)s =

12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit . . . . . . . . . . . . . . 126

5.41 Plot of momentum thickness for the 90◦/90◦ pipe without a weld at (a)s =

12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit . . . . . . . . . . . . . . 127

5.42 Plot of momentum thickness for the 90◦/90◦ pipe with a 30◦ weld at (a)s =

12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit . . . . . . . . . . . . . . 127

5.43 Contour of turbulent intensity for the straight pipe without a weld at (a)s =

12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit . . . . . . . . . . . . . . 128

5.44 Contour of turbulent intensity for the 90◦/90◦ pipe without a weld at (a)s =

12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit . . . . . . . . . . . . . . 128

5.45 Contour of turbulent intensity for the 90◦/90◦ pipe with a 30◦ weld at (a)s =

12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit . . . . . . . . . . . . . . 129

5.46 Contour of turbulent kinetic energy dissipation rate for the straight pipe with-

out a weld at (a)s = 12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit . . . 129

5.47 Contour of turbulent kinetic energy dissipation rate for the 90◦/90◦ pipe with-

out a weld at (a)s = 12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit . . . 130

5.48 Contour of turbulent kinetic energy dissipation rate for the 90◦/90◦ pipe with

a 30◦ weld at (a)s = 12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit . . . 130

5.49 Sketch of the mercury free jet with MHD and energy deposition for the MERIT

experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

xviii



5.50 The Side view of mercury jet flow (a)in dimension (b)normalized by jet inlet

diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.51 Simplified two dimensional mercury jet model with reduced length, width,

and height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.52 The boundary conditions for the two dimensional mercury jet simulation . . 132

5.53 The velocity profile at the inlet of the two dimensional mercury jet simulation 133

5.54 Contour of volume fraction of mercury for the two dimensional mercury jet

simulation over (a)the whole computational domain (b) 0 < x < 0.2 for

enlarged view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.55 Schematics of target delivery system by V. Graves . . . . . . . . . . . . . . . 134

5.56 Simplification of the three dimensional mercury jet model:(a)dimensional model

(unit: inch) (b)non-dimensional model (normalized by jet inlet diameter, D)

(c) simplified model with reduced length, width, and height (normalized by

jet inlet diameter, D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.57 The boundary conditions for the three dimensional mercury jet simulation

case 1. The dimension shown in the draft is normalized by jet inlet diameter,

which is 0.01m. No gravity in the model. Case1: The jet inlet conditions use

outputs of straight nozzle pipe without a weld . . . . . . . . . . . . . . . . . 135

5.58 The axial velocity profile imposed at the inlet of the three dimensional mercury

jet simulation case 1 (a) x line plot (b) y line plot . . . . . . . . . . . . . . . 135

5.59 Results of volume fraction of mercury, αHg, for three dimensional mercury jet

simulation case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.60 Results of axial velocity, Uz, for three dimensional mercury jet simulation case 1136

5.61 The axial velocity profile imposed at the inlet of the three dimensional mercury

jet simulation case 2 (a) x line plot (b) y line plot . . . . . . . . . . . . . . . 137

5.62 Results of volume fraction of mercury, αHg, for three dimensional mercury jet

simulation case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xix



5.63 Results of axial velocity, Uz, for three dimensional mercury jet simulation case 2138

5.64 The boundary conditions for the three dimensional mercury jet simulation

case 3. The dimension shown in the draft is normalized by jet inlet diameter,

which is 0.01m. No gravity in the model. Case3: The jet inlet conditions use

outputs of 90◦/90◦ pipe with a 30◦ weld . . . . . . . . . . . . . . . . . . . . . 138

5.65 The axial velocity profile imposed at the inlet of the three dimensional mercury

jet simulation case3 (a) x line plot (b) y line plot . . . . . . . . . . . . . . . 139

5.66 Results of volume fraction of mercury, αHg, for three dimensional mercury jet

simulation case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.67 Results of axial velocity, Uz, for three dimensional mercury jet simulation case 3141

5.68 Difference of αHg between three dimensional mercury jet simulation case1 and

case3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.69 Draft of ellipse fitting: a is the major axis, b is the minor axis, and /theta is

the rotational angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.70 Least square fitting of ellipses for 3D mercury jet simulations using as input

the output from a straight pipe without a weld: (a) contour of volume fraction

of mercury at z = 30 cm, (b) ellipse fitting at z = 30 cm, (c) contour of volume

fraction of mercury at z = 45 cm, (b) ellipse fitting at z = 45 cm. . . . . . . 146

5.71 Least square fitting of ellipses for 3D mercury jet simulations using as input

the output from a 90◦/90◦ pipe without a weld: (a) contour of volume fraction

of mercury at z = 30 cm, (b) ellipse fitting at z = 30 cm, (c) contour of volume

fraction of mercury at z = 45 cm, (b) ellipse fitting at z = 45 cm . . . . . . . 147

5.72 Least square fitting of ellipses for 3D mercury jet simulations using as input

the output from a 90◦/90◦ pipe with a 30◦ weld: (a) contour of volume fraction

of mercury at z = 30 cm, (b) ellipse fitting at z = 30 cm, (c) contour of volume

fraction of mercury at z = 45 cm, (b) ellipse fitting at z = 45 cm . . . . . . . 148

xx



List of Tables

4.1 The properties of two phases in 2D turbulent jet simulation . . . . . . . . . . 82

4.2 The locations of the onset of turbulent breakup for 2D jet simulations in

FLUENT codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 Ellipticity and fitting errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

xxi



List of Abbreviations

LS Level Set

VOF Volume of Fluid

MAC Marker and Cell

CLSVOF Coupled Level Set Volume of Fluid

RANS Reynolds-averaged Navier-Stokes

RSM Reynolds Stress Model

SA Spalart-Allmaras

SKE Standard k − ε

RKE Realizable k − ε

SIMPLE Semi Implicit Method for Pressure Linked Equations

CSF Continuum Surface Force

UDS User Defined Scaler

UDM User Defined Memory

MUSCL Monotone Upstream-centered Scheme for Conservation Laws

TVD Total Variation Diminishing

WENO Weighted Essentially Non-Oscillatory

RK Runger-Kutta

RHS Right Hand Side

CV convex side

CC concave side

xxii



LES Large Eddy Simulation

ILES Implicit Large Eddy Simulation

DNS Direct Numerical Simulation

NSE Navier Stokes Equation

xxiii



List of Symbols

a pipe radius (m)

R curvature radius (m)

De Dean number

Re Reynolds number

δ curvature ratio (δ ≡ a/R)

uτ mean friction velocity (m/s)

Reτ Reynolds number based on uτ

ϕ half-bend angle of the target delivery pipe (◦)

r radial direction (m)

θ azimuthal angle direction (◦)

z axial coordinate direction (m)

z̃ flow direction tangential to the pipe center-line (m)

I turbulence intensity (%)

k turbulence kinetic energy (m2/s2)

k∗ non-dimensional k

k mean turbulence kinetic energy (m2/s2)

ε turbulence kinetic energy dissipation (m2/s3)

ε∗ non-dimensional ε

u instantaneous velocity in the r direction (m/s)

xxiv



v instantaneous velocity in the θ direction (m/s)

w instantaneous velocity in the z direction (m/s)

u∗ non-dimensional u

v∗ non-dimensional v

w∗ non-dimensional w

r∗ normalized r

θ∗ normalized θ

z∗ normalized z

ρ mass density (kg/m3)

Ub bulk velocity (m/s)

∇∗2 non-dimensional Laplacian operator

∇∗n non-dimensional normal gradient

t time (s)

p instantaneous/reduced pressure (N/m2, Pa)

p∗ non-dimensional instantaneous pressure

P ∗ non-dimensional mean pressure
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Chapter 1

Introduction

In this chapter, we present the background of the study, motivations, review of flow in

curved pipes, and objectives of the thesis work.

1.1 Mercury Target Issues in the Muon Collider Project

The MERIT experiment at CERN [1, 2] is a proof-of-principle test for a target system

that converts a 4-MW proton beam into a high-intensity muon beam for either a neutrino

factory complex or a Muon Collider (Fig. 1.1). The mercury jet issues from the nozzle at the

end of a delivery pipe to form a target that intercepts an intense proton beam inside a 15-T

solenoid magnet. The use of liquid targets overcomes problematic effects of solid targets, such

as melting/vaporization of components, damage by beam-induced pressure waves for pulsed

beams, and extensive radiation damage. Also, liquid target systems offer the advantage of

continuous regeneration of the target volume. However, the design of the mercury delivery

pipe introduces new challenges.

The MERIT experiment uses a 180◦ bend, which has half-bend angles of 90◦ in the shape

of a “U”, for the delivery of the mercury. This geometry complicates the flow relative to

that in a straight pipe, and affects the quality of the jet. Since the quality of the jet greatly

influences the production of muon particles, it is pertinent to investigate the dynamics of
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Figure 1.1: Sectional view of the target supple pipe of the MERIT experiment. The mercury
jet generated at the end of the nozzle is on top of the nominal beam trajectory. Both mercury
jet and proton beam move from right to left

the flow of mercury in the 180◦ bend, with a focus on exit-flow properties. Furthermore, for

optimum muon particles production, the mercury jet flow should be near laminar.

1.2 Motivations of the Study

In the MERIT experiment, the coupling between pipe geometry, magnetic field, energy

deposition results in very complex flow conditions. In this thesis, investigation of mercury

internal flow and jet flow is carried out without magnetic field or high energy deposition.

This clarifies the pure geometry effects of delivery pipe on dynamics of mercury flow and it is

the baseline to understand the effects of magnetic field as well as the high energy deposition.

Due to the difficulties of experimental investigation to optimize the target delivery pipe,

computational fluid dynamics (CFD) is a valuable tool and provides access to various hydro-

dynamical characteristics in the entire geometry. The commercial code, ANSYS FLUENT,

is a general purpose CFD code, which is very stable in simulating incompressible low speed

flow. Also FLUENT has a VOF method for modeling of two phase flows. A CLSVOF

method developed in this thesis couples LS method and VOF method via UDFs in FLUENT

to achieve a better free interface capturing capability. This thesis investigates mercury flow

in curved pipes and mercury jet flow taking advantage of UDFs in the FLUENT code.
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1.3 Review of Flow in Curved Pipes

Eustice [3, 4] is among the first to demonstrate the existence of a secondary flow in a

curved pipe, an observation he made from injecting ink into water flowing through a pipe.

Dean [5, 6] introduced a parameter which bears his name (Dean number, De ≡ Reδ1/2,

where Re is the Reynolds number based on the area-averaged mean velocity through a pipe

of diameter of 2a, and δ is curvature radio (δ ≡ a/R, where R is radius of curvature and a

is the pipe radius)) to characterize the magnitude and shape of the secondary motion inside

a loosely coiled pipe (δ << 1). Subsequent work by others have investigated curved pipes

with different values of R. Adler [7] presents experimental results of laminar and turbulent

flows in three pipes with different R values. Rowe [8] investigates turbulent water flows for

a curvature ratio δ = 1/24 in a circular 180◦ bend. Total pressure and yaw angle relative to

the bend axis are measured for Reynolds number Re = 236, 000. Enayat et al. [9] reports on

the axial components of the mean and fluctuating velocities for the turbulent water flow in

a circular 90◦ bend for a δ value of 1/5.6 and for a wide range of Reynolds numbers. Azzola

et al. [10] compute and measure the developed turbulent flow in a 180◦ bend for δ = 1/6.75

and Reynolds number values of 57, 400 and 110, 000. The standard k − ε model is used.

Answer et al. [11] measures the Reynolds stresses and mean velocity components in vertical

and horizontal planes containing the pipe axis, for air flow in a 180◦ bend, with δ = 1/13

and Re = 50, 000. Sudo et al. [12] reports on the measurements of turbulent flow through a

circular 90◦ bend for δ = 1/4. Sudo and his co-workers [13] also measure turbulent air flow

in a 180◦ circular bend for the same δ value, but with Re = 60, 000. The axial, radial, and

circumferential components of the mean velocity and the corresponding components of the

Reynolds stress tensor are reported. Hüttl et al. [14] investigate the influence of curvature

and torsion on turbulent flow in helically-coiled pipes for a Reynolds number Reτ = 230,

where Reτ is based on the mean friction velocity, uτ . The pipe curvature was found to induce

a secondary flow, which has a strong effect on the dynamics. Rudolf et al. [15] study the

flow characteristics in several curved ducts: single elbow to coupled elbows in shapes of “U,”

3



Figure 1.2: Coordinates along a curved pipe

“S,” and noncoplanar right angle, for a fixed value of δ = 1/4 and Re = 60, 000.

The uniqueness of the present study can be found in the effects of the half-bend angle, ϕ

(as shown in Figure 1.2), and that of the presence of a nozzle in the exit region of eight pipe

configurations on the momentum thickness and turbulence intensity at the pipe exit. The

curvature ratios match those of the pipes that are tested in the MERIT experiment. The

pipe geometries investigated are shown in Figure 1.3.

1.4 Review of Turbulent Flows through Pipes with Rough

Inner Surfaces

Turbulent flows in pipes has always been a major source of inspiring practical problems

in the study of fluid dynamics. Among the numerous investigations in the field, noticeable

efforts have been devoted to the cases in which the pipe had inner-surface roughness, e.g.,

grooves, fins, and other constrictions. These types of problems attracted special attentions

for their wide applications in the fields of heat transfer [17, 18, 19], cardiac-vascular blood

flow studies [20, 21, 22], and the design of unsteady flow meters [23, 24].

Two categories of roughness on the inner surfaces of pipes are usually considered in the
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Figure 1.3: Configurations of pipes investigated: without nozzles for ϕ1/ϕ2 of (a-1) 0◦/0◦

(b-1) 30◦/30◦ (c-1) 60◦/60◦ (d-1) 90◦/90◦; with nozzles for ϕ1/ϕ2 of (a-2) 0◦/0◦ (b-2) 30◦/30◦

(c-3) 60◦/60◦ (d-2) 90◦/90◦
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literature. The first category includes corrugations and grooves, in which case the main

research interests lie in the interactions between vorticity occupying cavities and core flows

along the axial direction of pipes [25, 26, 28, 29]. The other category is related to various types

of constrictions, such as valves in blood vessels [30, 31], welded pipe-flange joints [32, 33],

and turbulators in heat exchangers [16, 19]. For both categories, several physical quantities

are used to describe the properties of the flows, including pressure gradient, pressure loss,

vorticity, maximum velocity, shear stress, turbulence kinetic energy, and turbulence viscosity.

In the following sections, we will review the effects of the two types of inner-surface roughness

on turbulent pipe flows in detail.

1.4.1 Turbulent Flows through Pipes with Corrugations

Corrugations are discrete grooves placed at periodic intervals along the inner surfaces of

pipes. A lot of efforts have been devoted to the investigation of the interactions between

recirculating fluid inside the grooves and the main flows in the pipe. Previous works tried

to find out the isolating conditions of the main flow from the recirculating flow, the circum-

stances of a momentum transfer phenomenon, and the extent to which Reynolds stress is

affected in the vicinity of cavities.

One of the earliest contributions to the study of the effects of corrugations on turbulent

flows through pipes was carried out by Perry and collaborators [25]. In their work, the

“d-type” and “k-type” corrugations were introduced, based on their different effects on the

interactions between flows in grooves and main flows along the axial direction of pipes.

Cavities with a length-to-height ratio less than 4 are referred to as “d-type” corrugations,

which are able to largely isolate the recirculating flows in the grooves from the main flow.

In this case, the equivalent surface roughness length scale depends only on the boundary

layer thickness. On the other hand, the “k-type” corrugations are those with larger than

4 length-to-height ratios, which allow prominent momentum transfers between cavity flows

and the main flow.
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Later experimental studies by Djenidi et al. [26, 27] illustrate that the isolation of the

recirculating fluid in cavities from outer flows is not a general property of all the d-type

corrugations. They find out significant increases in turbulent intensities in the vicinities

of downstream corners of the cavities. The existence of interactions between main and

groove flows in pipes with “d-type” corrugations is furthered supported by the numerical

study of Chang and his collaborators [34]. It is shown that both normal and shear stresses

increased noticeably at the opening of cavities. They also observe that the most significant

enhancement occurred near the downstream corners of the cavities, which is consistent with

the aforementioned results from Djenidi et al. [27].

Sutardi et al. [35] perform experiments on the turbulent flows through pipes with three

different types of transverse grooves and two different Reynolds numbers. For all the six

tests, the friction factors measured are all larger than those of smooth inner-surface pipe

flows. Moreover, they show that the square groove results in a 50% higher drag force than

the semi-circular and triangular grooves. They explain by comparing structures of vorticities

in the three types of grooves, and find that only the square cavity could sustain the existence

of two smaller eddies above the main vortex, which is capable to result in more fluid ejections

and momentum transfers from the groove into the core flow.

Increased friction factors in pipes with corrugations compared with those with smooth

inner-surfaces is reported by Eiamsa-ard et al. [28] through simulations. Turbulent forced

convection through channels with “k-type”, “d-type”, and intermediate cavities are simulated.

Their main conclusion is consistent with that by Sutardi’s group [35]: grooved channels

provides considerable increase in the friction factor over smooth channels. This kind of

increase in drag force is also reported by Luo et al. [36] in their simulations for a horizontal

parallel-plate channel with periodic transverse ribs. Recirculating flow patterns are formed

in the cavity between two adjacent ribs, and their interaction with the core flow is inferred

to be the cause of the increasing of the friction factor. The interaction between vortex flows

in grooves and the main flow in the axial direction is further corroborated by Yang[37],
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Vijiapurapu and Cui [38], and experiments by Promvonge and Thianpong [39] and Dong et

al. [40].

1.4.2 Turbulent Flows in Pipes with Constrictions

Turbulent flows through constrictions have attracted much attention recently for their

increasing relevance in many engineering applications. Both experimental studies and nu-

merical simulations have revealed the ability of constrictions to cause significant resistance

to flow and pressure loss [41, 42, 43]. Independent studies [44, 45] showed that vortical

structures occurred in the vicinity of the constrictions when the main flow is in the decel-

eration phase. Besides, several authors reported that the increases in shear stress and loss

of pressure resulting from the existence of restrictions are larger in the deceleration phase

than in the acceleration phase [46, 47, 48]. Here we don’t make detail descriptions for these

applications in the physiological sciences and bioengineering, since they are not our interest.

In this dissertation, a case for the study of a constriction/weld is analyzed in the field of

mechanical engineering, which has not been stated by other people as we know.

1.5 Review of Multiphase Models

There are generally two approaches for modelling two-phase flow: one-fluid model and

two-fluid model. The main difference between these two models is the number of conservation

equations solved. The one-fluid model solves a single set of conservation equations and is

more widely used than the two-fluid model for two-phase flow. In the one-fluid model,

the interfacial motion can be computed using Lagrangian tracking methods or Eulerian

capturing methods. Lagrangian tracking techniques [49] are very accurate and efficient for

flexible moving boundaries with small deformations, such as MAC (marker and cell) methods

[50], arbitrary Lagrangian-Eulerian methods, [51, 53, 54] or front tracking methods. [55, 56]

However, it is difficult to use in the cases where the interface breaks up or coalesces with
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another interface. Also, additional remeshing is needed when a large deformation of the

interface occurs. Eulerian capturing methods use an auxiliary function for the motion of the

interface and have a wide range of applicability. The LS and VOF methods are two examples

of one-fluid model using the Eulerian capturing methods. They are very robust but require

a higher mesh resolution. In this work, both of these two methods are used.

The LS method [57, 58, 59, 60] uses a zero contour of a continuous signed distance

function, known as the level set function, to represent the interface. The distance function is

positive on one side and negative on the other side of the interface. The motion of interface

is governed by the level set transport equation and a re-initialization equation is applied to

keep the level set function as a signed distance function. The LS method has better accuracy

in computing curvature and normal to the interface, however, it is not conservative, leading

to a significant, physically incorrect loss/gain of mass for incompressible two-phase flow.

The VOF method [61, 62, 63, 71] describes the interface with a volume of fluid function,F ,

which is defined as the volume fraction of one of the fluids in each cell. F is zero or unity in

pure fluid cells and has a value of 0 < F < 1 in multi-fluid cells. The interface is explicitly

described in each multi-fluid cell based on F . The distribution of F is solved through an

advection equation using the reconstructed interface and the underlying velocity field. In

an incompressible continuity equation, the conservation of mass equals to the conservation

of volume. Therefore, the volume-of-fluid advection to advance an interface conserves the

volume. The conservation of volume of each fluid is an important property of the VOF

method. However, VOF method lacks an accurate method for calculation of surface tension

in the problems with high density ratios. Moreover, a higher-order of accuracy is hard to

achieve for VOF method because of the discontinuity in the volume fraction.

In order to obtain better performance in capturing an interface, a combination of LS and

VOF, abbreviated as CLSVOF, has been used by many researchers [72, 73, 74, 75, 76, 77, 78].

The CLSVOF method retains the advantages of each method: LS, to compute curvature and

normal to the interface, and VOF, to capture the interface. Normally, the CLSVOF method
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is superior to both the standalone LS and VOF methods. [72, 79, 80]

1.6 Objectives of the Research

The objectives of this study are as follows: (i) Theoretical studies of the secondary

flow in a curved pipe; (ii) Numerical simulation of turbulent mercury flow in a curved pipe

with/without a weld, with the purposes of studying the effects of pipe geometry and weld

on the turbulence intensity of flow at the pipe exit; (iii) Numerical simulation of mercury jet

flow using the exit conditions of pipe flow as the inlet conditions.

Rather than proposing a new numerical code, this study works with the user-defined

functions (UDFs) in commercial code FLUENT to carry out the various simulations in this

study.

In this dissertation, we describe mathematical models, numerical algorithms, numerical

verification and validation, numerical simulations for the internal flow and jet flow. In chapter

2, the governing equations for internal laminar and turbulent flow, LS method, VOF method,

the coupling between LS and VOF, and the continuum surface model will be introduced.

In chapter 3, the numerical procedure of solving the governing equations will be described.

In Chapter 4, numerical verification and validations to understand the secondary flow, to

choose the realizable k− ε model, and to test the developed CLSVOF method will be given.

The results of internal mercury flow and mercury jet flow will be shown in chapter 5. The

dissertation will conclude with future work in chapter 6.
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Chapter 2

Governing Equations and Boundary

Conditions

2.1 Governing Equations for Laminar Flow in Curved

Pipes

To better understand the global resulting flow in the target delivery pipe, a first prelim-

inary study is restricted to the modeling of laminar flow through standard bends, without

magnetic field or energy deposition.

The motion of a fluid particle in a pipe segment, assuming isothermal conditions, is

governed by the conservation of mass and momentum in the flow. The cylindrical polar

coordinate system (r, θ, z) is used for the baseline straight pipe of circular cross-section, where

r is the radial distance, θ is the azimuthal angle, and z is the axial coordinate direction. The

vector (u,v,w), in dimensional form, denotes the components of the instantaneous velocity

in the r, θ, and z coordinate directions, respectively. Steady state and incompressible flow

conditions are assumed. The non-dimensional continuity equation in the straight pipe can

be written as

Lc(u
∗, v∗, w∗) = 0, (2.1)
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where (u∗, v∗, w∗) are the non-dimensional components of the instantaneous velocity.

The non-dimensional momentum equations in the normalized r∗, θ∗, and z∗ coordinate

directions of the straight circular pipe can be written as

LMi
(u∗, v∗, w∗) = 0, (2.2)

where i = 1, 2, and 3 refer to the r∗, θ∗, and z∗ components, respectively. Thus, [84]

Lc(u
∗, v∗, w∗) ≡ ∂u∗

∂r∗
+
u∗

r∗
+

1

r∗
∂v∗

∂θ∗
+
∂w∗

∂z∗
, (2.3)

LM1(u
∗, v∗, w∗) ≡ ∂u∗

∂t∗
+ u∗

∂u∗

∂r∗
+
v∗

r∗
∂u∗

∂θ∗
+ w∗

∂u∗

∂z∗
− v∗2

r∗
+
∂p∗

∂r∗

− 1

Re
(∇∗2u∗ − u∗

r∗2
− 2

r∗2
∂v∗

∂θ∗
), (2.4)

LM2(u
∗, v∗, w∗) ≡ ∂v∗

∂t∗
+ u∗

∂v∗

∂r∗
+
v∗

r∗
∂v∗

∂θ∗
+ w∗

∂v∗

∂z∗
+
u∗v∗

r∗
+

1

r∗
∂p∗

∂θ∗

− 1

Re
(∇∗2v∗ +

2

r∗2
∂u∗

∂θ∗
− v∗

r∗2
), (2.5)

LM3(u
∗, v∗, w∗) ≡ ∂w∗

∂t∗
+ u∗

∂w∗

∂r∗
+
v∗

r∗
∂w∗

∂θ∗
+ w∗

∂w∗

∂z∗
+
∂p∗

∂z∗
− 1

Re
∇∗2w∗. (2.6)

The scales for dimensionalization are as follows:

u∗ = u/Ub, v
∗ = v/Ub, w

∗ = w/Ub, r
∗ = r/a, z∗ = z/a,

p∗ = p/ρU2
b , Re ≡

2aUbρ

µ
, (2.7)

where p is the reduced pressure, ρ is the mass density of fluid, a is the radius of the circular

pipe, and Ub is the bulk velocity:

Ub =

∫
u(r, θ)rdrdθ∫

rdrdθ
, (2.8)
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Figure 2.1: Curvilinear coordinates for the periodically-curved pipe y = b sin(nx)

where u(r, θ) is the instantaneous axial velocity component.

The Laplacian operator, ∇∗2, is

∇∗2 ≡ 1

r∗
∂

∂r∗
(r∗

∂

∂r∗
) +

1

r∗2
∂2

∂θ∗2
+

∂2

∂z∗2
. (2.9)

The motion of a fluid in a curved pipe whose center-line varies locally in a two-dimensional

plane will be described in the curvilinear coordinates (r, θ, z̃), as shown in Fig. 2.1.

The coordinates r and θ are the same as those defined for a straight pipe, while z̃ is a

coordinate direction which is positive along the flow direction and is tangential to the pipe

center-line. The coordinates (r, θ, z̃) are a right-handed system and are always mutually

orthogonal when the pipe center-line is a two-dimensional curve. [85] The vector (u,v,w)

represents the instantaneous velocity components in the r, θ, and z̃ coordinate directions,

respectively.

Murata [85] has analyzed the steady laminar motion of a fluid through pipes of circular

cross-section, assuming small center-line curvatures. We will use his model as the starting

point for identifying the sources of secondary flows and compare the velocity distributions

associated with such sources to one obtained from a CFD analysis of the same physical

problem. For this purpose, we consider a pipe profile of the form y = b sin(nx) (Figure 2.1),

where b = 0.1, · · · , 1, 2, 3, · · · and n = 0.05, 0.1, · · · , 1, · · ·. We illustrate with the results for

b = 3.0 and n = 0.1. The results will be examined at the arbitrary point at x = 60, where
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the flow is already fully-developed. The following relations are defined:

x = z̃ − nbr cos θ

L
cos(nx), y = b sin(nx) +

r cos θ

L
, z = r sin θ,

Γ1
33 = −Lκc

√
g33 cos θ,Γ2

33 =
L

r
κc
√
g33 sin θ,Γ3

13 = Γ3
31 =

L
√
g33

κc cos θ,

Γ3
23 = Γ3

32 = − L
√
g33

κcr sin θ,Γ3
33 =

1
√
g33

∂

∂z̃

√
g33, (2.10)

where

L = [1 + n2b2 cos2(nx)]1/2, (2.11)

√
g33 = L(1 + rκc cos θ), (2.12)

κc =
n2b sin(nx)

L3
. (2.13)

Compared to Eqn. (2.3) through (2.6), the additional terms can be non-dimensionalized

using the following scales:

g∗33 = g33, Γ1∗
33 = aΓ1

33,Γ
2∗
33 = Γ2

33a
2, Γ3∗

13 = aΓ3
13, Γ3∗

31 = aΓ3
31, Γ3∗

23 = Γ3
23,

Γ3∗
32 = Γ3

32, Γ3∗
33 = aΓ3

33. (2.14)

The non-dimensional continuity and momentum equations can then be written as follows:

Continuity

L̃c(u
∗, v∗, w∗) = 0, (2.15)

where

L̃c(u
∗, v∗, w∗) =

1

r∗
∂(r∗u∗)

∂r∗
+

1

r∗
∂v∗

∂θ
+

1
√
g33

∂w∗

∂z̃∗
+ Γ3∗

31u
∗ + Γ3∗

32

v∗

r∗
. (2.16)

Momentum

L̃Mi
(u∗, v∗, w∗) = 0, (2.17)
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where

L̃M1(u, v, w) = u∗
∂u∗

∂r∗
+
v∗

r∗
∂u∗

∂θ∗
− v∗2

r∗
+

w∗
√
g33

∂u∗

∂z̃∗
+ Γ1∗

33

w∗2

g33

+
∂p∗

∂r∗

− 1

Re
[
∂2u∗

∂r∗2
+

1

r∗
∂u∗

∂r∗
− u∗

r∗2
+

1

r∗2
∂2u∗

∂θ∗2
+

1

g33

∂2u∗

∂z̃∗2

− 2

r∗2
∂v∗

∂θ∗
+

Γ1∗
33

g33

(Γ3∗
13u
∗ + Γ3∗

23

v∗

r∗
− ∂u∗

∂r∗
) +

Γ2∗
33

g33

(v∗ − ∂u∗

∂θ∗
)

+
Γ3∗

33

g33

∂u∗

∂z̃∗
+

1

g33

{ w∗
√
g33

∂

∂z̃∗
(Γ1∗

33) + 2Γ1∗
33

∂

∂z̃∗
(
w∗
√
g33

)}], (2.18)

L̃M2(u
∗, v∗, w∗) = u∗

∂v∗

∂r∗
+
v∗

r∗
∂v∗

∂θ∗
+
u∗v∗

r∗
+

w∗
√
g33

∂v∗

∂z̃∗
+ Γ2∗

33

r∗w∗2

g33

+
1

r∗
∂p∗

∂θ∗
− 1

Re
[
∂2v∗

∂r∗2
+

1

r∗
∂v∗

∂r∗
− v∗

r∗2
+

1

r∗2
∂2v∗

∂θ∗2

+
1

g33

∂2v∗

∂z̃∗2
+

2

r∗2
∂u∗

∂θ∗
+

Γ2∗
33

g33

(Γ3∗
13r
∗u∗ − u∗ + Γ3∗

23v
∗ − ∂v∗

∂θ∗
)

−Γ1∗
33

g33

∂v∗

∂r∗
− Γ3∗

33

g33

∂v∗

∂z̃∗
+
r∗

g33

{ w∗
√
g33

∂

∂z̃∗
(Γ2∗

33) + 2Γ2∗
33

∂

∂z̃∗
(
w∗
√
g33

)}],(2.19)

L̃M3(u
∗, v∗, w∗) = u∗

∂

∂r∗
(
w∗
√
g33

) +
v∗

r∗
∂

∂θ∗
(
w∗
√
g33

) +
w∗

g33

∂w∗

∂z̃∗

+
2w∗
√
g33

(Γ3∗
31u
∗ + Γ3∗

32

v∗

r∗
) +

1

g33

∂p∗

∂z̃∗

− 1

Re
[
∂2

∂r∗2
(
w∗
√
g33

) +
1

r∗
∂

∂r∗
(
w∗
√
g33

) +
1

r∗2
∂2

∂θ2
(
w∗
√
g33

)

+
1

g33

∂

∂z̃∗
(

1
√
g33

∂w∗

∂z̃∗
) +

1

g33

{u∗ ∂
∂z̃∗

(Γ3∗
13) +

v∗

r∗
∂

∂z̃∗
(Γ3∗

23)}

+
w∗
√
g33

{ ∂
∂r∗

(Γ3∗
13) +

1

r∗2
∂

∂θ
(Γ3∗

23)}

+Γ3∗
13{

2

g33

∂u∗

∂z̃∗
+ 2

∂

∂r∗
(
w∗
√
g33

) +
1

r∗
w∗
√
g33

}

+
2Γ3∗

23

r∗2
{ r
∗

g33

∂v∗

∂z̃∗
+

∂

∂θ∗
(
w∗
√
g33

)}+
w∗
√
g33

{(Γ3∗
13)2 + (

Γ3∗
32

r∗
)2}

− 1

g33

{Γ1∗
33

∂

∂r∗
(
w∗
√
g33

) + Γ2∗
33

∂

∂θ∗
(
w∗
√
g33

)}]. (2.20)
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2.2 Governing Equations for Turbulent Flow

2.2.1 Continuity and Momentum Equations

As stated earlier, the mean flow (U∗, P ∗) is calculated with RANS, where the mean flow

is related to the instantaneous (u∗, p∗) and fluctuating (u′)∗, (p′)∗) components as follows:

u∗ = U∗ + (u′)∗ (2.21)

p∗ = P ∗ + (p′)∗ (2.22)

The governing equations for the mean flow can be expressed in terms of mass conservation

(continuity),
∂U∗

∂t
+∇∗ ·U∗ = 0, (2.23)

and the momentum conservation,

∂U∗

∂t
+ U∗ · ∇∗U∗ = − 1

ρ∗
∇∗P ∗ +

1

Re
∇∗·τ ∗ + F. (2.24)

The internal mercury pipe flow is assumed to be steady state without gravity force, thus

the continuity and momentum equations can be simplified to be

∇∗·U∗ = 0, (2.25)

and the momentum conservation,

U∗·∇∗U∗ = − 1

ρ∗
∇∗P ∗ +

1

Re
∇∗·τ ∗. (2.26)

The shear stress tensor, τ ∗, is modeled as

τ ∗ij = (µ∗ + µ∗t )(
∂U∗i
∂x∗j

+
∂U∗j
∂x∗i

) (2.27)
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and the eddy viscosity is computed from

µ∗t = ρ∗Cµ
k∗2

ε∗
, (2.28)

where k∗ is the kinetic energy of turbulence, k∗ ≡ 1
2
((u′)∗ + (v′)∗ + (w′)∗), and ε∗ is its

dissipation rate. Cµ is modeled as [89]

Cµ =
1

A0 + As
k∗U(∗)

ε∗

, (2.29)

where

U (∗) ≡
√
S∗ijS

∗
ij + Ω

∗
ijΩ
∗
ij, (2.30)

S∗ij =
1

2
(U∗i,j + U∗j,i), (2.31)

Ω
∗
ij =

1

2
(U∗i,j − U∗j,i). (2.32)

S∗ij is the symmetric part of the rate-of-strain (deformation) tensor, with Ω
∗
ij the antisym-

metric part.

The model constants A0 and As are given as [89]

A0 = 4.04, As =
√

6 cosφ, (2.33)

where

φ =
1

3
cos−1(

√
6W ),W =

S∗ijS
∗
jkS
∗
ki

S̃∗3
, S̃∗ =

√
S∗ijS

∗
ij. (2.34)

2.2.2 Realizable k − ε model

A Reynolds-averaged Navier-Stokes (RANS) equation approach will suffice for the current

problem in which the fluid is bounded by a circular, no-slip wall, and the interest is mainly

on the mean flow. The Reynolds stress model (RSM) [86] has been judged to be the most
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accurate RANS model for turbulent flow in curved pipes, as it includes memory effects

and the effects of streamline curvature. However, RSM is a six-equation model that is

computationally expensive for practical engineering problems. Several options exist for the

simpler one- or two-equation RANS approaches, including the Spalart-Allmaras (SA), [87]

Standard k− ε (SKE), [88] and Realizable k− ε (RKE) [89] models. In this work, the RKE

model is selected for the curved-pipe internal flow problem.

The k − ε turbulent model is found to be a useful engineering approach to predict the

mean velocity profiles of turbulent flows. In general, the stand k − ε model qualitatively

predicts most turbulent flows, while it fails to give consistent prediction for the plane jet

and round jet problems [90, 91]. The RKE model is also used for the turbulent jet flow

simulation.

The non-dimensional equations for RKE model can then be written as [89]

U∗·∇∗k∗ = ∇∗ · [( 1

Re
+

1

σkRet
)∇∗k∗] +G∗t − ε∗, (2.35)

U∗·∇∗ε∗ = ∇∗ · [( 1

Re
+

1

σεRet
)∇∗ε∗] + C1S

∗ε∗ − C2
1

a

ε∗2

k∗ +
√
ν∗ε∗

, (2.36)

where σk and σε are the turbulent Prandtl numbers for k and ε, respectively. Ret is the

Reynolds number based on the eddy viscosity (Eqn. (2.28)).

The production of turbulence kinetic energy, G∗t , is evaluated in a manner consistent with

the Boussinesq hypothesis:

G∗t = (2
1

Ret
S∗ij −

2

3
k∗δij)U

∗
i,j. (2.37)

The constants for the realizable k − ε model are

σk = 1.0, σε = 1.2, C1 = max[0.43,
Γ

Γ + 5
], C2 = 1.9, (2.38)

where

Γ = S
k

ε
, S =

√
2SijSij. (2.39)
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2.2.3 Boundary conditions

The inlet velocity for all pipes is that of a fully developed flow for a straight pipe aligned

with the x-direction:

U∗ = V ∗ = 0,W ∗ = W ∗(r∗). (2.40)

The discrete form ofW ∗(r∗) is taken as the solution at the exit of a straight pipe obtained

from an auxiliary simulation, with the axial velocity profile shown in Fig. 2.2. At the inlet,

the mean pressure is P = 30 bar (or P ∗ = 30), while the turbulence conditions are

k∗ =
3

2
(U∗I)2, ε∗ =

C3/4
µ k∗3/2

l∗
, (2.41)

where I is the turbulence intensity, I = 0.16Re−1/8. The values of Cµ and l∗ are:

Cµ = 0.09, l∗ = 0.07D∗h, (2.42)

and D∗h = 2. No-slip conditions are specified at the wall,

U∗ = V ∗ = W ∗ = 0, (2.43)

while zero-gradient conditions are assumed at the pipe outlet:

∇∗nU∗ = ∇∗nV ∗ = ∇∗nW ∗ = ∇∗nP ∗ = · · · = 0, (2.44)

where ∇∗n ≡ ∂∗/∂n∗ and “n∗” is the outward-pointing normal at the outlet.

2.3 Level Set Method

In the level set (LS) [57, 60, 92, 93, 94], the level set function, φ, is used to represent and

propagate the free surface. The interface, where the points have the φ value of 0, divides the
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Figure 2.2: Fully developed normalized velocity profile W ∗(r∗) at pipe inlet

liquid region (φ > 0) from the gas region (φ < 0). The interface is transported by the level

set equation,

φt + u · ∇φ = 0. (2.45)

Note that the dimensional form of the equations are presented and used for the description

of the two-phase problem.

2.3.1 Reynolds-averaged level set equation

In an incompressible flow, ∇·u = 0, and the LS equation is equivalent to the conservation

law:

φt +∇ · (uφ) = 0. (2.46)

In a turbulent flow field, φ and u may be decomposed into mean and fluctuation compo-

nents:

φ = Φ + φ′, (2.47)

u = U + u′. (2.48)

Applying Reynolds averaging procedure to the instantaneous equation yields

φt +∇ · (Uφ+ u′φ́) = 0. (2.49)
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The scalar flux term is modeled via the gradient-flux approximation [96]:

−u′φ́ = DT∇φ, (2.50)

where the turbulent diffusivity is

DT = c1k
2
/ε (2.51)

and c1 is a constant. Nilsson and Bai used c1 = 0.129 [97], a value that will also be used in

this thesis. Thus, the averaged equation, omitting the averaging symbols, can be written as

φt +∇ · (Uφ−DT∇φ) = 0. (2.52)

In the LS method, the density and the dynamic viscosity are described as

ρ(x, t) = ρl[1−Hε(φ(x, t))] + ρgHε(φ(x, t)), (2.53)

µ(x, t) = µl[1−Hε(φ(x, t))] + µgHε(φ(x, t)), (2.54)

where the subscripts l and g denote liquid and gas phases, respectively[98]. Hε is the

smoothed Heaviside function[58]

Hε(φ) =


0 if φ < −ε,

(φ+ ε)/2ε+ sin(πφ/ε)/2π if |φ| < ε,

1 if φ > ε,

(2.55)

where ε is a parameter whose value ranges from one to two times the local mesh size close

to the interface. Physically, ε represents half of the interface thickness.
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2.3.2 Re-initialization equation

In order to keep φ as the signed normal distance and interface as the zero level set

function, a re-initialization equation is required [58]:

φτ + S(φ0)(|∇φ| − 1) = 0, (2.56)

where φ0 is the initial condition of φ and S is the sign function, which can be defined as

S(φ0) =
φ0√
φ2

0 + δε
, (2.57)

where the parameter, δε = 10−16, in order to avoid division by zero.

Equation (2.56) is written in the form

φτ + w · ∇φ = S(φ0), (2.58)

for the purpose of spatial discretization, where w is the unit velocity vector pointing away

from the interface φ0 = 0. φ0 is the initial condition to Eqn. (2.58).

w = S(φ0)
∇φ
|∇φ|

, (2.59)

2.4 Volume of Fluid Method

The volume of fluid (VOF) method uses the volume fraction of one of the fluids within

each cell to determine the interface. The volume fraction is one if the cell is filled with the

liquid phase, zero if the cell is filled with the gas phase, and between zero and one in the

cells where there is an interface. The liquid volume fraction is advected with the velocity

field:
∂F

∂t
+ U · ∇F = 0. (2.60)
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Figure 2.3: (a) the exact interface for a circular arc over a square grid; Interface reconstructed
by the scheme of (b) Simple Line Interface Calculation (SLIC) (c) Piecewise Linear Interface
Calculation (PLIC)

Given the fixed grid, the velocity field U, and the field F at the previous step, the liquid

volume fraction field F can be updated in general. The 2D interface is considered to be

a continuous, piecewise smooth line. In order to reconstruct the interface, first we need

to determine which cells contain the interface, and then decide the location in these cell

by considering the volume fraction, F , in the cells bounding the interface. The simplest

reconstruction of the interface are the Simple Line Interface Calculation (SLIC) [100], which

is first order accurate. More accurate VOF techniques attempt to fit the interface through

piecewise linear segments, like Piecewise Linear Interface Calculation (PLIC) [63]. Figure 2.3

(a) shows a exact volume of fraction for a smooth circular arc over a square grid. An

interface that has been reconstructed using SLIC method is shown in Fig. 2.3(b), while the

one constructed by the PLIC method is given in Fig. 2.3(c).

In the VOF method, the density and the dynamic viscosity are approximated by the

following formulas:

ρ(x, t) = ρg + (ρl − ρg)F, (2.61)

µ(x, t) = µg + (µl − µg)F, (2.62)

where l and g denote “liquid” and “gas” phases, respectively, and F is the liquid volume

fraction.
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Figure 2.4: Algorithm of CLSVOF method used in this thesis

2.5 Coupling Level Set and Volume of Fluid

The LS method tends to lose/gain mass [79]. The VOF method encounters numerical

difficulties at the interface and it is difficult to calculate the interface curvature. CLSVOF

method overcomes these problems by mitigating the disadvantages of these two methods.

To couple the VOF method and the LS method, the volume fraction F , in a given cell

of the domain, at time t, is defined as a function of the level set φ[64]:

F (Ω, t) =
1

|Ω|

∫
Ω
Hε(φ(x, y, t))dxdy, (2.63)

where Hε is the smoothed Heaviside function defined in Eqn. (2.55).

When starting the project, FLUENT doesn’t have the function of CLSVOF method but

only implements the VOF method. Therefore we only need to solve the LS method and

couple it to the VOF method inside FLUENT. In Nichita’s Ph.D. thesis [49] , a detailed

algorithm for the CLSVOF method in FLUENT is presented (Fig. 2.4), which is also used

in this thesis.
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However, his code is implemented only for structured (Cartesian) grids for laminar flow.

Based on Nichita’s CLSVOF algorithm, this work develops a CLSVOF module that is ap-

plicable to unstructured meshes, by solving the level set and re-initialization equations in a

transformed coordinate system.

2.6 Continuum Surface Model

For multiphase flow, the surface tension force is considered in the momentum equation.

The CSF (Continuum Surface Force) model of Brackbill et al. [67], is used to approximate

the surface tension force:

Fst = σκ(φ)nδε(φ), (2.64)

where σ is the surface tension coefficient. For mercury-air, its value is 0.4855 N/m at room

temperature. δε(φ) is the smoothed delta function, which is defined as the derivative of the

smoothed Heaviside function, Hε(φ), with respect to φ:

δε(φ) =


0 if |φ| > ε,

1/2ε+ cos(πφ/ε)/2ε if |φ| < ε.
(2.65)

κ is the mean curvature of the interface, and n is the normal vector of the interface. In the

LS method, they are defined by

n =
∇φ
|∇φ|

, κ = ∇ · ∇φ
|∇φ|

. (2.66)
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Chapter 3

Numerical Procedure

3.1 Discretization of The Continuity Equation

Control-volume-based technique is used in the commercial FLUENT code, which re-

quires integrating the governing equations about each control volume. Eqn. (2.23) is a

non-dimensional continuity equation in differential form. The integral form of a dimensional

continuity equation for an arbitrary control volume Ω can be written as

∂

∂t

∫
Ω

UdΩ +
∫
S
(U · nS)dS = 0, (3.1)

where nS is the local, outward-pointing unit normal to the S.

Equation (3.1) can be discretized on a given control volume in the computational domain

to yield the discretized equation

∂U

∂t
4V +

Nfaces∑
f

UfAf = 0 (3.2)

where Nfaces is the number of faces enclosing the control volume, Uf is the velocity normal

to the face f , and Af is the area of face f (note that the normal vector nS has been dotted

with the velocity vector along nS).
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3.1.1 Temporal Discretization

The first-order explicit discretization is used for temporal term:

Un+1 −Un

∆t
∆V = Γ(Un), (3.3)

where Γ incorporates any spatial discretization.

3.1.2 Spatial Discretization

The spatial discretization in Eq. (3.2) in the integral form is

Γ(U) =
∫
S
(U · nS)dS. (3.4)

And its discretized form can be written as

Γ(U) = −
Nfaces∑
f

UfAf . (3.5)

The FLUENT saves all fluid information at the cell centers. Taking the 2D control

volume shown in Fig. 3.1 (uniform ∆x and ∆y) as an example, the discretized form of the

continuity equation is

Γ(U) = −(Ui+1/2,j − Ui−1/2,j)4 y − (Vi,j+1/2 − Vi,j−1/2)4 x, (3.6)

where Ui+1/2,j, Ui−1/2,j, Vi,j+1/2, and Vi,j−1/2 are the velocities on the faces surrounding the

control volume (i, j).

The values of the velocities at the cell surfaces (Ui+1/2,j, Ui−1/2,j, Vi,j+1/2, Vi,j−1/2), can be

calculated from the values of velocity at the cell centers. Linear interpolation of cell-centered

velocities to the face results in unphysical checker-boarding of pressure [68]. Instead, a

procedure similar to that by Rhie and Chow [69] is used to prevent checkerboarding. The
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Figure 3.1: Two dimensional control volume for continuity equation

values of the velocities at the cell surfaces are momentum-weighted averaging instead of using

the linear average.

Uf =
Uc0/ap,c0 + Uc1/ap,c1

1/ap,c0 + 1/ap,c1
+
df
ρf

[(Pc0 + (∇P )c0 · r0)− (Pc1 + (∇P )c1 · r1)]

= Ĵf +
df
ρf

(Pc0 − Pc1), (3.7)

where Uc0 , Uc1 and Pc0 , Pc1 are the normal velocities and pressures within the two cells

on either side of the face f , ap,c0 and ap,c1 are the under-relaxation factors for velocity.

The under-relaxation factors are used in the pressure-based solver in FLUENT to stabilize

the convergence behavior of the outer nonlinear iterations [68]. Ĵf contains the influence

of velocities in these cells. The term df is a function of aP , the average of the momentum

equation coefficients aP for the cells on either side of face f [68]. ρf is value of density at

the cell surfaces.

This procedure works well as long as the velocity variation between cell centers is smooth.

However when there are jumps or large gradients of velocity, the value velocities cannot be

interpolated using this momentum-weighted averaging [68]. Instead, other alternate inter-

polation methods should be used:
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(1) The linear scheme computes the face velocities as the average of the velocity values

in the adjacent cells.

Uf =
Uc0 + Uc1

2
. (3.8)

(2) The second-order upwind scheme

Uf = U +∇U · r, (3.9)

where U and∇U are the cell-centered value and its gradient in the upstream cell, and r is the

displacement vector from the upstream cell centroid to the face centroid. The determination

of ∇U is required in this scheme, which can be computed by Green-Gauss cell-based method

or least squares cell-based method. When a polyhedral mesh is used, the cell-based least

square gradients are recommended for use over the Green-Gauss cell-based method. The

details of the evaluation of gradients can also be found in the FLUENT theory guide [68].

It is described in the FLUENT theory guide that the second-order scheme is not applicable

for the VOF model [68].

(3) The central-differencing scheme

The central-differencing scheme provides improved accuracy for LES (Large Eddy Simu-

lation) calculations.

Uf =
1

2
(Uc0 + Uc1) +

1

2
(∇Uc0 · rc0 +∇Uc1 · rc1), (3.10)

where ∇Uc0 and ∇Uc1 are the normal velocities within the two cells on either side of the face

f respectively, and r is the vector directed from the cell centroid toward the face centroid.
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3.2 Discretization of The Momentum Equation

The non-dimensional differential form of momentum equation is given in Eq. (2.24. The

dimensional integral form of the momentum equation is

ρ[
∂

∂t

∫
Ω

UdΩ +
∫
S
(UU·nS)dS] = −

∫
S
PnSdS+

∫
S

(τ · nS)dS+
∫

Ω
FdΩ. (3.11)

The discretization of above equation on a given control volume, or cell yields

ρ
∂U

∂t
∆V + ρ

Nfaces∑
f

(UfUf ·Af ) = −
Nfaces∑
f

PAf +
Nfaces∑
f

τ ·Af+F∆V, (3.12)

where Nfaces is the number of faces enclosing the control volume, Uf is the velocity normal

to the face f , Uf ·Af is the volume flux through the face, Af is the face area vector, ∆V is

the volume of the cell.

3.2.1 Temporal Discretization

The generic expression for the above equation is given by

ρ
d

dt

∫
Ω

UdΩ = Γ(U), (3.13)

where Γ incorporates any spatial discretization. The first-order explicit discretization is

ρ
Un+1 −Un

∆t
∆V = Γ(Un). (3.14)

3.2.2 Spatial Discretization

The spatial discretization in momentum equation in integral form is

Γ(U) = −
∫
S
(UU·nS)dS −

∫
S
PnSdS+

∫
S

(τ · nS)dS+
∫

Ω
FdΩ. (3.15)
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Thus its discretized form is.

Γ(U) = −ρ
Nfaces∑
f

(UfUf ·Af )−
Nfaces∑
f

PAf +
Nfaces∑
f

τ ·Af+F∆V. (3.16)

Applied to the same 2D control volume shown in Fig. 3.1,the corresponding discretizations

are as follows:

Γ(U) = −(E
(1)
i+1/2,j − E

(1)
i−1/2,j)4 y − (K

(1)
i,j+1/2 −K

(1)
i,j−1/2)4 x

−(Pi+1,j − Pi,j)∆y + F
(1)
i,j ∆x∆y (3.17)

Γ(V ) = −(E
(2)
i+1/2,j − E

(2)
i−1/2,j)4 y − (K

(2)
i,j+1/2 −K

(2)
i,j−1/2)4 x

−(Pi,j+1 − Pi,j)∆x+ F
(2)
i,j ∆x∆y, (3.18)

where E(1), E(2), K(1), and K(2) are defined as follows

E(1) = ρU2 − (µ+ µt)
∂U

∂x
, (3.19)

E(2) = ρUV − (µ+ µt)
∂V

∂x
, (3.20)

K(1) = ρUV − (µ+ µt)
∂U

∂y
, (3.21)

K(2) = ρV 2 − (µ+ µt)
∂V

∂y
. (3.22)

Thus

E
(1)
i+1/2,j = ρU2

i+1/2,j − (µ+ µt)
∂U

∂x

∣∣∣∣∣
i+1/2,j

, (3.23)

E
(1)
i−1/2,j = ρU2

i−1/2,j − (µ+ µt)
∂U

∂x

∣∣∣∣∣
i−1/2,j

, (3.24)

E
(2)
i+1/2,j = ρ(UV )i+1/2,j − (µ+ µt)

∂V

∂x

∣∣∣∣∣
i+1/2,j

, (3.25)

E
(2)
i−1/2,j = ρ(UV )i−1/2,j − (µ+ µt)

∂V

∂x

∣∣∣∣∣
i−1/2,j

, (3.26)
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Figure 3.2: cell p and its adjacent cells nb, neighboring the cell p

K
(1)
i,j+1/2 = ρ(UV )i,j+1/2 − (µ+ µt)

∂U

∂y

∣∣∣∣∣
i,j+1/2

, (3.27)

K
(1)
i,j−1/2 = ρ(UV )i,j−1/2 − (µ+ µt)

∂U

∂y

∣∣∣∣∣
i,j−1/2

, (3.28)

K
(2)
i,j+1/2 = ρV 2

i,j+1/2 − (µ+ µt)
∂V

∂y

∣∣∣∣∣
i,j+1/2

, (3.29)

K
(2)
i,j−1/2 = ρV 2

i,j−1/2 − (µ+ µt)
∂V

∂y

∣∣∣∣∣
i,j−1/2

. (3.30)

The face velocities and face gradients can be interpolated through the values at the

cell centers by the schemes described in the context of the discretization of the continuity

equation. Consequently, Eqns. (3.17) and (3.18) can be written as

Γ(U) = −ai,jUi,j −
∑
nb

anbUnb −∆y(Pi+1,j − Pi,j)− F 1
i,j∆x∆y, (3.31)

Γ(V ) = −bi,jVi,j −
∑
nb

bnbVnb −∆x(Pi,j+1 − Pi,j)− F 2
i,j∆x∆y, (3.32)

where a, anb b, and bnb are linearized coefficients for U , Unb, V , and Vnb respectively.∑
nb anbUnb and

∑
nb bnbVnb signify all the convective and diffusive contributions from the

neighboring nodes. The subscript nb refers to the neighbor cells as the locations between

the cell center p and the adjacent cells nb shown in Fig. 3.2.

3.2.3 Pressure-Velocity Coupling SIMPLE (Semi Implicit Method

for Pressure Linked Equations) Scheme

The SIMPLE algorithm uses the relationship between velocity and pressure corrections

to enforce mass conservation and to obtain the pressure field [68]. First, guess a pressure
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P ∗. Then a velocity U∗f can be computed by P ∗ through Eqn.(3.7)

U∗f = Ĵ∗f +
df
ρf

(P ∗c0 − P
∗
c1

). (3.33)

However, U∗f does not satisfy the continuity equation. A correction U ′f is considered for

a corrected Uf

Uf = U∗f + U ′f , (3.34)

which satisfies the continuity equation. The SIMPLE scheme postulates that U ′f be written

as

U ′f =
df
ρf

(P ′c0 − P
′
c1

), (3.35)

where P ′ is the cell pressure correction.

Substitute the correction equations (3.34) and (3.35) into the discrete continuity equa-

tion (3.2) to obtain a discrete equation for the pressure correction P ′ in the cell:

aPP
′ =

∑
nb

anbP
′
nb + c, (3.36)

where the source term c is the net flow rate into the cell:

c =
Nfaces∑
f

U∗fAf . (3.37)

Once a solution for the Eqn. (3.36) has been obtained, the cell pressure and face velocity

are corrected by

P = P ∗ + aP Ṕ , (3.38)

Uf = J∗f +
df
ρf

(P ′c0 − P
′
c1

), (3.39)

where ap is the under-relaxation factor for pressure. The corrected Uf satisfies the discrete
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continuity equation identically during each iteration.

3.3 Discretization of k and ε Equations

The integral form of the k and ε equations are

ρ[
∂

∂t

∫
Ω
kdΩ +

∫
S
(kU·nS)dS] =

∫
S
[(µ+

µt
σk

)∇k · nS]dS+
∫

Ω
(Gk − ρε)dΩ, (3.40)

ρ[
∂

∂t

∫
Ω
εdΩ +

∫
S
(εU·nS)dS] =

∫
S
[(µ+

µt
σε

)∇ε · nS]dS

+
∫

Ω
(ρC1Sε− ρC2

ε2

k +
√
νε

)dΩ. (3.41)

Appling the above equations to each control volume, or cell, in the computational domain,

yields the discretized k and ε equations on a given cell:

ρ
∂k

∂t
∆V + ρ

Nfaces∑
f

kfUf ·Af =
Nfaces∑
f

(µ+
µt
σk

)∇kf ·Af+(Gk − ρε)∆V, (3.42)

ρ
∂ε

∂t
∆V + ρ

Nfaces∑
f

εfUf ·Af =
Nfaces∑
f

(µ+
µt
σε

)∇kf ·Af

+(ρC1Sε− ρC2
ε2

k +
√
νε

)∆V. (3.43)

3.3.1 Temporal Distretization

The temporal discretization uses the first-order explicit integration as the temporal dis-

cretization of the continuity and momentum equations:

kn+1 − kn

∆t
∆V = Γ(kn), (3.44)

εn+1 − εn

∆t
∆V = Γ(εn), (3.45)

where Γ equation incorporates the spatial discretization of the k or ε equation.

34



3.3.2 Spatial Discretization

The spatial discretization in k and ε equations in integral form are

Γ(k) = −
∫
S
(kU·nS)dS] +

∫
S
[(µ+

µt
σk

)∇k · nS]dS+
∫

Ω
(Gk − ρε)dΩ, (3.46)

Γ(ε) = −
∫
S
(εU·nS)dS] +

∫
S
[(µ+

µt
σε

)∇ε · nS]dS

+
∫

Ω
(ρC1Sε− ρC2

ε2

k +
√
νε

)dΩ. (3.47)

Their corresponding discretized equations can be written as

Γ(k) = −ρ
Nfaces∑
f

kfUf ·Af +
Nfaces∑
f

(µ+
µt
σk

)∇kf ·Af+(Gk − ρε)∆V, (3.48)

Γ(ε) = −ρ
Nfaces∑
f

εfUf ·Af +
Nfaces∑
f

(µ+
µt
σε

)∇kf ·Af

+(ρC1Sε− ρC2
ε2

k +
√
νε

)∆V. (3.49)

Applied to the same 2D control volume shown in Fig. 3.1,the corresponding discretizations

are as follows:

Γ(k) = −(M
(1)
i+1/2,j −M

(1)
i−1/2,j)4 y − (N

(1)
i,j+1/2 −N

(1)
i,j−1/2)4 x

+(Gk − ρε)i,j∆x∆y (3.50)

Γ(ε) = −(E
(2)
i+1/2,j − E

(2)
i−1/2,j)4 y − (K

(2)
i,j+1/2 −K

(2)
i,j−1/2)4 x

+(ρC1Sε− ρC2
ε2

k +
√
νε

)i,j∆x∆y, (3.51)

where M (1), M (2), N (1), and N (2) are defined as follows

M (1) = ρkU − (µ+
µt
σk

)
∂k

∂x
, (3.52)

M (2) = ρεU − (µ+
µt
σε

)
∂ε

∂x
, (3.53)
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N (1) = ρkV − (µ+
µt
σk

)
∂k

∂y
, (3.54)

N (2) = ρεV − (µ+
µt
σε

)
∂ε

∂y
. (3.55)

Thus

M
(1)
i+1/2,j = ρ(kU)i+1/2,j − (µ+

µt
σk

)
∂k

∂x

∣∣∣∣∣
i+1/2,j

, (3.56)

M
(1)
i−1/2,j = ρ(kU)i−1/2,j − (µ+

µt
σk

)
∂k

∂x

∣∣∣∣∣
i−1/2,j

, (3.57)

M
(2)
i+1/2,j = ρ(εU)i+1/2,j − (µ+

µt
σε

)
∂ε

∂x

∣∣∣∣∣
i+1/2,j

, (3.58)

M
(2)
i−1/2,j = ρ(εU)i−1/2,j − (µ+

µt
σε

)
∂ε

∂x

∣∣∣∣∣
i−1/2,j

, (3.59)

N
(1)
i,j+1/2 = ρ(kV )i,j+1/2 − (µ+

µt
σk

)
∂k

∂y

∣∣∣∣∣
i,j+1/2

, (3.60)

N
(1)
i,j−1/2 = ρ(kV )i,j−1/2 − (µ+

µt
σk

)
∂k

∂y

∣∣∣∣∣
i,j−1/2

, (3.61)

N
(2)
i,j+1/2 = ρ(εV )i,j+1/2 − (µ+

µt
σε

)
∂ε

∂y

∣∣∣∣∣
i,j+1/2

, (3.62)

N
(2)
i,j−1/2 = ρ(εV )i,j−1/2 − (µ+

µt
σε

)
∂ε

∂y

∣∣∣∣∣
i,j−1/2

. (3.63)

The values of k and ε at the cell surface (ki+1/2,j, ki,j+1/2, ki−1/2,j, ki,j−1/2, εi+1/2,j, εi,j+1/2, εi−1/2,j, εi,j−1/2,)

is accomplished using upwind schemes and the diffusion terms in k and ε equations always use

second-order central-differenced schemes. The first-order upwind and second-order upwind

schemes are described in the context of discretization of continuity equation. The third-order

MUSCL (Monotone Upstream-centered Scheme for Conservation Laws) scheme is used for

the discretization of the k and ε equations when a high order scheme is required. The third-

order MUSCL scheme blends a central differencing scheme and second-order upwind scheme

as [68]

γf = θγf,CD + (1− θ)γf,SOU , (3.64)
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where γ represents a general scalar, γf,CD is a face value obtained with a central differencing

scheme and γf,SOU is a face value obtained with a second-order upwind scheme. The first

term is written as follows:

γf,CD =
1

2
(γ0 + γ1) +

1

2
(∇γ0 · n0 +∇γ1 · n1), (3.65)

where γ0 and γ1 are the values at the centroids of two neighboring control volumes sharing

the same face, ∇γ0 and ∇γ1 are the gradients of the scalar computed at cell centroids and

n0 and n1 are the direction vectors pointing from cell centroid to the face centroid.

The second term, γf,SOU , is computed as

γf,SOU = γ +∇γ · 4s, (3.66)

where γ and ∇γ are the value at the cell center and its gradients in the upstream cell,

respectively. 4s is the displacement vector from the upstream cell centroid to the face

centroid. The gradient ∇γ is computed using the divergence theorem,

∇γ =
1

∆V

Nface∑
f

γ̃fAf (3.67)

Here the face value γ̃f are computed by averaging γ from the two cells adjacent to the

face.

3.4 Numerical Procedure for the Level Set Method

3.4.1 UDFs in ANSYS FLUENT

Figure 3.4 illustrates the solution process for the pressure-based solvers, which is used

in this study. It begins with a two-step initialization sequence that is executed outside the

solution iteration loop. This sequence begins by initializing equations to user-specified (or
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default) values taken from the ANSY FLUENT user interface. Next, PROFILE UDFs are

called, followed by a call to INIT UDFs. Initialization UDFs overwrite initialization values

that were previously set. The solution iteration loop begins with the execution of ADJUST

UDFs. Next ANSYS FLUENT solves the governing equations of continuity and momentum

sequentially or in a coupled fashion. Subsequently, the energy and species equations are

solved, followed by turbulence and other scalar transport equations, as required. Note that

PROFILE and SOURCE UDFs are called by each “Solve” routine for the variable currently

under consideration (e.g., species, velocity).

After the conservation equations, properties are updated, including PROPERTY UDFs.

For CLSVOF method, the re-initialization equation and the couple between LS and VOF

method are carried at the end of each iteration. A check for either convergence or additional

requested iterations is done, and the loop either continues or stops.

Since FLUENT already contains a VOF method, only the LS method needs to be imple-

mented in the code via UDFs. The level set equation is solved by enabling the User Defined

Scalar (UDS) equation in FLUENT. The use of macros DEFINE_UDS_UNSTEADY, DE-

FINE_UDS_FLUX, and DEFINE_DIFFUSIVITY set up the scalar equation for level set

function in FLUENT. The unsteady and advection terms are hooked to FLUENT in the

User-Defined Scalars panel. The scalar diffusivity is assigned in the Materials panel. The

boundary condition for the scalar equation is assigned in the Boundary Condition panel.

Especially note that the boundary condition for the LS function at inlet must be fixed to

zero, due to that hyperbolic nature of Eq. (2.56). The characteristics propagate outward

from the zero level set, φ = 0.
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3.4.2 UDF’s for the unsteady term in level set equation

The unsteady term of the level set function Eq.(2.52) is moved to the right hand side

and discretized as follows:

unsteady term = −
∫ ∂φ

∂t
dV = −[

φn+1 − φn

∆t
] ·∆V

= −4V
4t

φn+1 +
4V
4t

φn. (3.68)

The macro DEFINE_UDS_UNSTEADY is used for the user-defined scalar time derivatives.

The temporal discretization uses the first-order explicit time integration as

φn+1 − φn

∆t
= Γ(φn). (3.69)

3.4.3 UDF’s for the flux term in level set equation

The advection term in the level set equation has the following form:

flux term = ∇ · (Uφ). (3.70)

The integral and discretization of the flux term on a given cell are

flux term in the integral form =
∫
S
(φU·nS)dS (3.71)

flux term in the disrectized form =
Nfaces∑
f

(φfUf ·Af ). (3.72)

The third-order MUSCL scheme is used to calculate the face value φf ,

φf = θφf,CD + (1− θ)φf,SOU , (3.73)
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where the factor θ is set to 0.125 for the problem being studied, and,

φf,CD =
1

2
(φ0 + φ1) +

1

2
(∇φ0 · r0 +∇φ1 · r1), (3.74)

φf,SOU = φ+∇φ · 4s, (3.75)

where φ0 and φ1 are the cell centroid values of the two neighboring control volumes sharing

the same face, ∇φ0 and ∇φ1 are the gradients of the scalar computed at cell centroids and

r0 and r1 are the direction vectors pointing from cell centroid to the face centroid, φ and ∇φ

are the cell-centered value and its gradients in the upstream cell, and 4s is the displacement

vector from the upstream cell centroid to the face centroid. The gradient is computed using

the divergence theorem,

∇φ =
1

∆V

Nface∑
f

φ̃fAf . (3.76)

Here the face value φ̃f are computed by averaging φ from the two cells adjacent to the

face.

The macro DEFINE_UDS_FLUX is used for the flux term and it needs to return the

scalar value U · A to FLUENT, where A is the face normal vector. Since Eqn. (3.70) is

without the fluid density, it’s just simple to include “return F_FLUX(f,t)/ρ” in the DE-

FINE_UDS_FLUX UDF. The denominator ρ can be determined by averaging the adjacent

cell’s density values C_R (F_C0(f,t), THREAD_T0(t)) and C_R (F_C1(f,t), THREAD_T1(t)),

where C_R is flow variable macro in UDF for density, t is a pointer to the thread on which

the user-defined scalar flux is to be applied, and f is an index that identifies a face within

the given thread. F_C0, F_C1, THREAD_T0 and THREAD_T1 are neighboring cells of

the face f, and their corresponding threads (35).
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3.4.4 UDF’s for the diffusion term in level set equation

The diffusion term in the Reynolds-averaged LS equation is

diffusion term = ∇ · (−DT∇φ). (3.77)

The integral and discretized forms of the diffusion term are

flux term in the integral form = −
∫
S

(DT∇φ · nS)dS, (3.78)

flux term in the discretized form = −
Nfaces∑
f

(DT∇φf ·Af ). (3.79)

The face value φf uses the same MUSCL scheme as described in Eq.(3.73), and the

gradient of φ on the face is computed using the divergence theorem,

∇φf =
1

∆V

Nface∑
f

φfAf . (3.80)

The diffusion coefficient, DT , used in the macro “DEFINE_DIFFUSIVITY ” is defined

as

DT = c1k
2/ε, (3.81)

and c1 = 0.129 is a constant.

3.4.5 Discretization of Re-initialization Equation

The re-initialization equation is implemented and solved at every time step and a DE-

FINE_EXECUTE_AT_END UDF is used. The temporal term is discretized by means of

TVD Runge-Kutta (RK) methods. The third-order time integration schemes can be written

as

φ(1) = φn + ∆t · L(φn), (3.82)
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φ(2) =
1

4
[3φn + φ(1) + ∆t · L(φ(1))], (3.83)

φn+1 =
1

3
[φn + 2φ(2) + 2∆t · L(φ(2))], (3.84)

where L(φ) is (Eqn.(2.58))

L(φ) = S(φ0)−w · ∇φ. (3.85)

The procedure of flux evaluation must be carried out during each stage of the Runge-

Kutta method. The explicit scheme considered above requires the computation of a time

step ∆t to be used in Eqn. (3.84), such that the stability of the numerical method is ensured.

One way of choosing ∆t is

∆t =
Ccfl
U0

×min(∆x,∆y,∆z), (3.86)

where U0 is initial bulk velocity, Ccfl is the CFL number and is chosen as

0 < Ccfl ≤ 1/3. (3.87)

in three space dimensions.

The convection term in Eqn. (2.58) can be expanded as

w · ∇φ = Wξφξ +Wηφη +Wζφζ , (3.88)

where Wi are the contravariant velocities, defined by

Wξ = wxξx + wyξy + wzξz, (3.89)

Wη = wxηx + wyηy + wzηz, (3.90)

Wζ = wxζx + wyζy + wzζz, (3.91)
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where

wx = S(φ0)
φx
|∇φ|

, (3.92)

wy = S(φ0)
φy
|∇φ|

, (3.93)

wz = S(φ0)
φz
|∇φ|

. (3.94)

Two sets of codes are made to evaluate the partial derivatives φx, φy, φz, φξ, φη, and φζ in the

spatial discretization using two different finite different methods. The partial derivatives of

φ in the coordinate system (x, y, z) is computed as

∂φ

∂x
= J [(

ξx
J
φ)ξ + (

ηx
J
φ)η + (

ζx
J
φ)ζ ], (3.95)

∂φ

∂y
= J [(

ξy
J
φ)ξ + (

ηy
J
φ)η + (

ζy
J
φ)ζ ], (3.96)

∂φ

∂z
= J [(

ξz
J
φ)ξ + (

ηz
J
φ)η + (

ζz
J
φ)ζ ], (3.97)

where ξx, ηx, ζx, ξy, ηy, ζy, ξz, ηz, and ζz are metrics.

(1) Second-order finite difference scheme

For derivatives of φ with respect to (x, y, z), the central finite difference is used as de-

scribed in Eqn. (3.98). Here, the examples are given for the term ( ξx
J
φ)ξ, similarly for other

components ()η and ()ζ . The central second-order finite differences is evaluated as

(
ξx
J
φ)ξ =

1

2
[(
ξx
J
φ)i+1,j,k − (

ξx
J
φ)i−1,j,k], (3.98)

when both cell (i− 1, j, k) and (i+ 1, j, k) are available. Otherwise, one-sided second-order

finite differences is used. The form of right-sided second-order finite differences is

(
ξx
J
φ)ξ =

1

2
[−3 ∗ (

ξx
J
φ)i,j,k + 4 ∗ (

ξx
J
φ)i+1,j,k − (

ξx
J
φ)i+2,j,k], (3.99)
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and the left-sided second-order finite difference is

(
ξx
J
φ)ξ =

1

2
[3 ∗ (

ξx
J
φ)i,j,k − 4 ∗ (

ξx
J
φ)i−1,j,k + (

ξx
J
φ)i−2,j,k]. (3.100)

For the calculation of φξ,φη, and φζ in Eqn. (3.88), first-order upwind scheme is used. The

values of the contravariant velocities are used to decide the upwind stencil.

φξ = φi+1/2,j,k − φi−1/2,j,k, (3.101)

φη = φi,j+1/2,k − φi,j−1/2,k, (3.102)

φζ = φi,j,k+1/2 − φi,j,k−1/2. (3.103)

The midpoint values are calculated using the first-order upwind scheme,

φi+1/2,j,k =


φi Wξ0

φi+1 Wξ < 0
, (3.104)

φi−1/2,j,k =


φi−1 Wξ0

φi Wξ < 0
. (3.105)

Similarly for φi,j±1/2,k and φi,j,k±1/2.

(2) Fifth-order Hamilton-Jacobi WENO scheme

To evaluate the gradient terms using a fifth-order WENO scheme, a point (i, j, k) needs

three points behind and three points after it in every direction. This poses no difficulties

for a point inside the domain, but when the point is within 3 points from the boundary,

the scheme doesn’t work anymore due to the lack of points. The stencil structure for the

fifth-order WENO scheme is shown in Fig. 3.3.

The definitions of φx, φy, and φz are given in Eqns.(3.95), (3.96), and (3.97). The partial

derivative terms ( ξx
J
φ)ξ, (ηx

J
φ)η, ( ζx

J
φ)ζ , ( ξy

J
φ)ξ, (ηy

J
φ)η, ( ζy

J
φ)ζ , ( ξz

J
φ)ξ, (ηz

J
φ)η, and ( ζz

J
φ)ζ are

evaluated using WENO scheme, as are φξ, φη, and φζ . Here, the details are only given for
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the partial derivatives of φ with respect to (ξ, η, ζ).

To solve φξ, φη, and φζ using Sussman’s method [64], the following equations are intro-

duced:

a = φ−ξ , b = φ+
ξ , c = φ−η , d = φ+

η , e = φ−ζ , f = φ+
ζ , (3.106)

where a, b, c, d, e, and f are computed with a fifth-order Hamilton-Jacobi WENO approx-

imation. First the derivative of φ in 1D is described and then its formulations in 3D are

given. To approximate φξ on a left biased stencil {i−3, i−2, i−1, i, i+1, i+2}, we introduce

φi = φ(i), ∆+φi = φi+1 − φi, and ∆−φi = φi − φi−1. The WENO approximation of φξ is

a combination of the weighted average of φξ, computed by ENO schemes. The 3rd order

accurate ENO scheme will choose one from the following

φ−,0ξ,i =
1

3
∆+φi−3 −

7

6
∆+φi−2 +

11

6
∆+φi−1 (3.107)

φ−,1ξ,i = −1

6
∆+φi−2 +

5

6
∆+φi−1 +

1

3
∆+φi (3.108)

φ−,2ξ,i =
1

3
∆+φi−1 +

5

6
∆+φi −

1

6
∆+φi+1, (3.109)

where φ−,sξ,i is the third-order approximation to φξ based on the sth substencil {i+ s− 3, i+

s− 2, i+ s− 1, i+ s} for s = 0, 1, 2.

The WENO approximation of φξ is a weighted average of φ−,sξ,i (s = 0, 1, 2):

φ−ξ,i = ω0φ
−,0
ξ,i + ω1φ

−,1
ξ,i + ω2φ

−,2
ξ,i . (3.110)

Here ωs is the weight associated with the sth substencil and the weights satisfy the

consistency equality: ω0 + ω1 + ω2 = 1. The definitions of the weights will be given shortly.

Substituting φ−,sξ,i into φ−ξ,i, we obtain

φ−ξ,i =
1

12
(−∆+φi−2 + 7∆+φi−1 + 7∆+φi −∆+φi+1)

−φWENO(∆−∆+φi−2,∆
−∆+φi−1,∆

−∆+φi,∆
−∆+φi+1), (3.111)
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where[49]

φWENO(a, b, c, d) =
1

3
ω0(a− 2b+ c) +

1

6
(ω2 −

1

2
)(b− 2c+ d) (3.112)

and the weights ω0 and ω2 are defined as

ω0 =
α0

α0 + α1 + α2

, (3.113)

ω2 =
α2

α0 + α1 + α2

, (3.114)

where

α0 =
1

(δε + IS0)2
,

α1 =
6

(δε + IS1)2
, α2 =

3

(δε + IS2)2
,

IS0 = 13(a− b)2 + 3(a− 3b)2,

IS1 = 13(b− c)2 + 3(b+ c)2,

IS2 = 13(c− d)2 + 3(3c− d)2. (3.115)

Here, δε is used to prevent the denominators from becoming zero. We set δε = 10−16.

By symmetry, the fifth-order WENO for φ+
ξ,i on the right-biased stencil {i+ s− 2, i+ s−

1, i+ s, i+ s+ 1} for s = 0, 1, and 2, can be written as

φ+
ξ,i =

1

12
(−∆+φi−2 + 7∆+φi−1 + 7∆+φi −∆+φi+1)

+φWENO(∆−∆+φi+2,∆
−∆+φi+1,∆

−∆+φi,∆
−∆+φi−1). (3.116)

For the general 3D case, the fifth-order Hamilton-Jacobi WENO approximations for the

first derivative of φ with respect to ξ, η, and ζ are:

φ±ξ,i,j,k =
1

12
(−∆+

ξ φi−2,j,k + 7∆+
ξ φi−1,j,k + 7∆+

ξ φi,j,k −∆+
ξ φi+1,j,k)

±φWENO(∆−ξ ∆+
ξ φi±2,j,k,∆

−
ξ ∆+

ξ φi±1,j,k,∆
−
ξ ∆+

ξ φi,j,k,∆
−
ξ ∆+

ξ φi∓1,j,k), (3.117)
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φ±η,i,j,k =
1

12
(−∆+

η φi,j−2,k + 7∆+
η φi,j−1,k + 7∆+

η φi,j,k −∆+
η φi,j+1,k)

±φWENO(∆−η ∆+
η φi±2,j,k,∆

−
η ∆+

η φi±1,j,k,∆
−
η ∆+

η φi,j,k,∆
−
η ∆+

η φi∓1,j,k), (3.118)

φ±ζ,i,j,k =
1

12
(−∆+

ζ φi,j,k−2 + 7∆+
ζ φi,j,k−1 + 7∆+

ζ φi,j,k −∆+
ζ φi,j,k+1)

±φWENO(∆−ζ ∆+
ζ φi,j,k±2,∆

−
ζ ∆+

ζ φi,j,k±1,∆
−
ζ ∆+

ζ φi,j,k,∆
−
ζ ∆+

ζ φi,j,k∓1). (3.119)

If we define a+, b−, c+, d−, e+, and f+ as follows:

a+ ≡ max(a, 0), b− ≡ min(b, 0),

c+ ≡ max(c, 0), d− ≡ min(d, 0),

e+ ≡ max(e, 0), f− ≡ min(f, 0). (3.120)

Then φξ , φη , and φζ can be calculated as follows:

φξ ≡ fs(a
+, b−)

√
max[(a+)2, (b−)2],

φη ≡ fs(c
+, d−)

√
max[(c+)2, (d−)2],

φζ ≡ fs(e
+, f−)

√
max[(e+)2, (f−)2], (3.121)

where fs is given by

fs(a
+, b−) =


sign(a)

sign(b)

if max[(a+)2, (b−)2 = (a+)2,

if max[(a+)2, (b−)2 = (b−)2.
(3.122)

For points that don’t have a complete WENO stencil, second-order schemes are used to

get the gradient of φ: one-sided second-order scheme for points on the boundary and central

second-order scheme for the rest. The formulations are shown in Eqns. (3.98), (3.99), and

(3.100).
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3.5 Discretization of Volume of Fluid Equation

The integral form for the volume of fluid equation is

∫
Ω

∂F

∂t
dV +

∫
FU · nSdA = 0. (3.123)

Its discretization on a given cell volume ∆V is

∂F

∂t
∆V +

Nfaces∑
f

FfUf ·Af = 0. (3.124)

The first-order explicit temporal discretization is used,

F n+1 − F n

∆t
∆V +

Nfaces∑
f

F n
f Un

f ·Af = 0. (3.125)

The face value of F is achieved by the second-order upwind scheme.

Ff = F +∇F · r, (3.126)

where F and ∇F are the cell-centered value and its gradient in the upstream cell, and r is

the displacement vector from the centroid of the upstream cell to that of the face.

3.6 Coupling Method

3.6.1 Reconstruction of level set values with planes in partial cells

After solving the convection equations of the level set function φ and the volume fraction

value F , we need to use F to correct φ before solving the reinitialization equation of φ. This

is exactly where the coupling between LS and VOF methods happens, which is necessary

to overcome the volume loss problem of the original LS method. To make this correction

feasible, we first need to define the interface in the cell Ωijk as a plane (a straight line in
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2D). As in Sussman and Puckett [64] , the following reconstructed level set φRijk is defined:

φRijk (x, y, z) = aijk (x− xi) + bijk (y − yj) + cijk (z − zk) + dijk. (3.127)

When the equation is normalized such that a2
ijk + b2

ijk + c2
ijk = 1, as pointed out by

Menard et al [65], the unit vector nijk = (aijk, bijk, cijk) represents the normal to the interface.

Correspondingly, dijk denotes the normal distance from the cell center (xijk, yijk, zijk) to the

interface.

To make φRijk an accurate approximation to the original level set function φ, as in Sussman

and Puckett [64], we minimize the following L2 error:

Eijk =
∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

δ (φ)
(
φ− φRijk (x, y, z)

)
dxdydz. (3.128)

We choose a 27-point stencil and the discrete form of the above error function reads[65]:

Eijk =
i′=i+1∑
i′=i−1

j′=j+1∑
j′=j−1

k′=k+1∑
k′=k−1

wi′−i,j′−j,k′−kδε (φi′j′k′)
(
φi′j′k′ − φRijk (x, y, z)

)
, (3.129)

where δε (φ) is the smoothed Dirac function with the thickness ε =
√

2min(dx, dy, dz, where

dx, dy, and dz are space step size. Wα,β,γ are weights that are larger on the central cell

(i, j, k) and smaller on the surrounding cells (i′, j′, k′). In particular, we choose a ratio of 16

between central cell weight and those of the surrounding cells as in Menard et al.[65]:

wl,m,n =


16 (l,m, n) = (0, 0, 0)

1 (l,m, n) 6= (0, 0, 0)
. (3.130)

To minimize Eijk, its first order derivatives with respect to aijk, biijk, cijk, and dijk should

all vanish:
∂Eijk
∂aijk

=
∂Eijk
∂bijk

=
∂Eijk
∂cijk

=
∂Eijk
∂dijk

= 0, (3.131)
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which leads to the following linear system:



∑∑∑
whX2 ∑∑∑

whXY
∑∑∑

whXZ
∑∑∑

whX∑∑∑
whXY

∑∑∑
whY 2 ∑∑∑

whY Z
∑∑∑

whY∑∑∑
whXZ

∑∑∑
whY Z

∑∑∑
whZ2 ∑∑∑

whZ∑∑∑
whX

∑∑∑
whY

∑∑∑
whZ

∑∑∑
wh


·



aijk

bijk

cijk

dijk


=



∑∑∑
whXφ∑∑∑
whY φ∑∑∑
whZφ∑∑∑
whφ


,

(3.132)

where the following abbreviations are adopted:

∑∑∑
=

i′=i+1∑
i′=i−1

j′=j+1∑
j′=j−1

k′=k+1∑
k′=k−1

, wh = wi′−i,j′−j,k′−kδε (φi′j′k′) ,

X = (xi′ − xi) , Y = (yj′ − yj) , Z = (zk′ − zk) , φ = φi′j′k′ . (3.133)

To solve the above linear system, we use the Gaussian elimination method with pivoting

as illustrated in Press et al. [66].

3.6.2 Correct level set values with volume fractions

With the plane reconstruction of level set values, we are ready to correct them with the

knowledge of volume fractions, in order to avoid mass loss. The essence of this correction

is based on the idea that the volume of liquid in a given partial cell must be the same, no

matter what method is used to calculate it. More specifically, the liquid volumes calculated

from the level set plane and from the result of the convection equation of the liquid volume

fraction should agree with each other. If we use Fijk to denote the volume fraction of liquid,

we obtain [65]:

1

dxdydz

∫ zk+1/2

zk−1/2

∫ yj+1/2

yj−1/2

∫ xi+1/2

xi−1/2

H
(
φRijk (x, y, z)

)
dxdydz = Fijk. (3.134)

Practically, the above equality will not be satisfied after we solve the advection equations

of φijk and Fijk by using FLUENT, as a result, the Newton iterative method is adopted to
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modify the parameter dijk until a given precision is satisfied for the above equation:

dnew
ijk = dijk −

1
dxdydz

∫ zk+1/2
zk−1/2

∫ yj+1/2
yj−1/2

∫ xi+1/2
xi−1/2

H
(
φRijk (x, y, z)

)
dxdydz− Fijk

1
dxdydz

∫ zk+1/2
zk−1/2

∫ yj+1/2
yj−1/2

∫ xi+1/2
xi−1/2

δ
(
φRijk (x, y, z)

)
dxdydz

. (3.135)

It is important to note that the Newton iterations are only performed for the cells around

the interface between air and liquid.

3.7 Surface Tension Force for Multiphase Flow

The momentum equations have surface tension terms in two-phase flow. The surface ten-

sion term is approximated using the CSF (Continuum Surface Force) model, as in Eqn. (2.64).

The DEFINE_SOURCE UDF specifies custom source term for momentum equations in

FLUENT,

source term = σκ(φ)nδε(φ). (3.136)

We need to determine the interface curvature, κ, and the normal to the interface, n.

Utilizing level set function, φ, curvature and normal to the interface are computed through

DEFINE_ADJUST function and are then stored in the User Defined Memory (UDM) for

each cell center.

By definition of the normal vector to a level surface, the unit normal −→n is achieved by

normalizing ∇φ with |∇φ|:

nx =
∂φ

∂x
/[(
∂φ

∂x
)2 + (

∂φ

∂y
)2 + (

∂φ

∂z
)2]1/2, (3.137)

ny =
∂φ

∂y
/[(
∂φ

∂x
)2 + (

∂φ

∂y
)2 + (

∂φ

∂z
)2]1/2, (3.138)

nz =
∂φ

∂z
/[(
∂φ

∂x
)2 + (

∂φ

∂y
)2 + (

∂φ

∂z
)2]1/2. (3.139)

The mean surface curvature is computed by taking the partial derivatives of the unit
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normal components in the manner consistent with the partial derivatives of φ:

∂nx
∂x

= J [(
ξx
J
nx)ξ + (

ηx
J
nx)η + (

ζx
J
nx)ζ)], (3.140)

∂ny
∂y

= J [(
ξy
J
ny)ξ + (

ηy
J
ny)η + (

ζy
J
ny)ζ)], (3.141)

∂nz
∂z

= J [(
ξz
J
nz)ξ + (

ηz
J
nz)η + (

ζz
J
nz)ζ ], (3.142)

=⇒ κ =
∂nx
∂x

+
∂ny
∂y

+
∂nz
∂z

. (3.143)

Each component of the partial derivatives is evaluated using second-order finite differences

as Eqs. (3.98), (3.99), and (3.100).

We now discuss the computation of the metrics. Metrics are solved numerically through

the expressions by xξ, xη, xz, etc., which can be computed by finite difference approximations.

To obtain the relations, the differential expressions are considered:

dx =
∂x

∂ξ
dξ +

∂x

∂η
dη +

∂x

∂ζ
dζ,

dy =
∂y

∂ξ
dξ +

∂y

∂η
dη +

∂y

∂ζ
dζ,

dz =
∂z

∂ξ
dξ +

∂z

∂η
dη +

∂z

∂ζ
dζ. (3.144)

The above equations can be cast in a matrix form:


dx

dy

dz

 =


xξ xη xζ

yξ yη yζ

yξ yη yζ




dξ

dη

dζ.

 (3.145)

Inverting, we have

dξ =
∂ξ

∂x
dx+

∂η

∂y
dy +

∂ζ

∂z
dz,

dη =
∂η

∂x
dx+

∂η

∂y
dy +

∂η

∂z
dz,
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dζ =
∂ζ

∂x
dx+

∂ζ

∂y
dy +

∂ζ

∂z
dz, (3.146)

or 
dξ

dη

dζ

 =


ξx ξy ξz

ηx ηy ηz

ζx ζy ζz




dx

dy

dz.

 (3.147)

Comparing the two matrices, we see that


ξx ξy ξz

ηx ηy ηz

ζx ζy ζz

 =


xξ xη xζ

yξ yη yζ

yξ yη yζ



−1

, (3.148)

from which

ξx = J(yηzζ − yζzη), ξy = J(xζzη − xηzζ), ξz = J(xηyζ − xζyη), (3.149)

ηx = J(yζzξ − yξzζ), ηy = J(xξzζ − xζzξ), ηz = J(xζyξ − xξyζ), (3.150)

ζx = J(yξzη − yηzξ), ζy = J(xηzξ − xξzη), ζz = J(xξyη − xηyξ), (3.151)

where J is the Jacobian of transformation defined by

J =
∂(ξ, η, ζ)

∂(x, y, z)
=

1

xξ(yηzζ − yζzη) + xη(yζzξ − yξzζ) + xζ(yξzη − yηzξ)
. (3.152)

In 2D problem, the expression for J is

J = [
∂(x, y)

∂(ξ, η)
]−1 = (xξyη − xηyξ)−1, (3.153)

so that

ξx = J ∗ yη, ξy = −J ∗ xη, ηx = −J ∗ yξ, ηy = J ∗ xξ. (3.154)
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Figure 3.3: The three substencils: (a) the left-biased stencil; (b) the right-biased stencil

Figure 3.4: Solution procedure for the pressure-based segregated/coupled solver

Second-order finite differences are used to discretize the derivatives xξ, xη, xζ , yξ, yη, yζ , zξ, zη,

and zζ . The procedure is the same as those shown in Eqs. (3.98), (3.99), and (3.100).
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Chapter 4

Numerical Verification and Validation

4.1 Understanding the Secondary Flows in Curved Pipes

For better understanding of the secondary flows in a curved pipe, we compare the gov-

erning equations for a curved pipe with those for a straight pipe and study the terms that

represent the differences between two sets of equations. We decompose the equations for a

curved pipe as follows

L̃c(u
∗, v∗, w∗) = Lc(u

∗, v∗, w∗) +D∗c , (4.1)

L̃M1(u
∗, v∗, w∗) = LM1(u

∗, v∗, w∗) +D∗r , (4.2)

L̃M2(u
∗, v∗, w∗) = LM2(u

∗, v∗, w∗) +D∗θ , (4.3)

L̃M3(u
∗, v∗, w∗) = LM3(u

∗, v∗, w∗) +D∗z̃ , (4.4)

where the first terms on the right-hand side of the equations represent the contribution of a

straight pipe and the remaining terms are due to curvature. The latter can easily be written

as follows:

D∗c ≡
∂w∗

∂z̃∗
(

1
√
g33

− 1) + Γ3∗
31u
∗ + Γ3∗

32

v∗

r∗
, (4.5)
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D∗r ≡ w∗
∂u∗

∂z̃∗
(

1
√
g33

− 1) + Γ1∗
33

w∗2

g33

− 1

Re
[
∂2u∗

∂z̃∗2
(

1

g33

− 1) +
Γ1∗

33

g33

(Γ3∗
13u
∗ + Γ3∗

23

v∗

r∗
− ∂u∗

∂r∗
)

+
Γ2∗

33

g33

(v∗ − ∂u∗

∂θ∗
)− Γ3∗

33

g33

∂u∗

∂z̃∗
+

1

g33

{ w∗
√
g33

∂

∂z̃∗
(Γ1∗

33) + 2Γ1∗
33

∂

∂z̃∗
(
w∗
√
g33

)}], (4.6)

D∗θ ≡ w∗
∂v∗

∂z̃∗
(

1
√
g33

− 1) + Γ2∗
33

r∗w∗2

g33

− 1

Re
[
∂2v∗

∂z̃∗2
(

1

g33

− 1) +
Γ2∗

33

g33

(Γ3∗
13r
∗u∗ − u∗ + Γ3∗

23v
∗

−∂v
∗

∂θ∗
)− Γ1∗

33

g33

∂v∗

∂r∗
− Γ3∗

33

g33

∂v∗

∂z̃∗
+
r∗

g33

{ w∗
√
g33

∂

∂z̃∗
(Γ2∗

33) + 2Γ2∗
33

∂

∂z̃∗
(
w∗
√
g33

)}], (4.7)

D∗z̃ ≡ (u∗
∂w∗

∂r∗
+
v∗

r∗
∂w∗

∂θ∗
)(

1
√
g33

− 1)− w∗

g33

(u∗
∂
√
g33

∂r∗
− v∗

r∗
∂
√
g33

∂θ∗
)

+(w∗
∂w∗

∂z̃∗
+
∂p∗

∂z̃∗
)(

1

g33

− 1) +
2w∗
√
g33

(Γ3∗
31u
∗ + Γ3∗

32

v∗

r∗
)

− 1

Re
[(

1
√
g33

− 1)(
∂2w∗

∂r∗2
+

1

r∗
∂w∗

∂r∗
+

1

r∗2
∂2w∗

∂θ∗2
) + (

1

(
√
g33)3

− 1)
∂2w∗

∂z̃∗2

−(
2

g33

∂w∗

∂r∗
− w∗

g2
33

∂g33

∂r∗
+

w∗

r∗g33

)
∂
√
g33

∂r∗
− (

2

g33

∂w∗

∂θ∗
− w∗

g2
33

∂g33

∂θ∗
)

1

r∗2
∂
√
g33

∂θ∗

− 1

g2
33

∂w∗

∂z̃∗
∂
√
g33

∂z̃∗
− w∗

g33

(
∂2√g33

∂r∗2
+

1

r∗2
∂2g33

∂θ∗2
) +

w∗
√
g33

{ ∂
∂r∗

(Γ2∗
13) +

1

r∗2
∂

∂θ∗
(Γ3∗

23)}

+
1

g33

{u∗ ∂
∂z̃∗

(Γ3∗
13) +

v∗

r∗
∂

∂z̃∗
(Γ3∗

23)}+ Γ3∗
13{

2

g33

∂u∗

∂z̃∗
+ 2

∂

∂r∗
(
w∗
√
g33

) +
1

r∗
w∗
√
g33

}

+
w∗
√
g33

{(Γ3∗
12)2 + (

Γ3∗
33

r∗
)2}+

Γ3∗
23

r∗2
{2r∗

g33

∂v∗

∂z̃∗
+ 2

∂

∂θ∗
(
w∗
√
g33

)}

− 1

g33

{Γ1∗
33

∂

∂r∗
(
w∗
√
g33

) + Γ2∗
33

∂

∂θ∗
(
w∗
√
g33

)}]. (4.8)

For fully-developed laminar flow in a straight pipe, D∗c = D∗r = D∗θ = D∗
z̃

= 0 when

g33 = 0, κc = 0, L = 0, Γk∗ij = 0, u∗ = v∗ = 0, and w∗ = w∗(r∗). For fully-developed

laminar flow in the sinusoidal pipe configuration, Eqs. (2.10) to (2.13), and the conditions

u∗ = u∗(r∗, θ∗), v∗ = v∗(r∗, θ∗), and w∗ = w∗(r∗, θ∗) lead to the following simplification of

the curvature terms:

D∗c (u
∗, v∗, w∗) ≡ Γ3∗

31u
∗ + Γ3∗

32

v∗

r∗
=

κc cos θ∗

1 + r∗κc cos θ∗
u∗ − κc sin θ∗

1 + r∗κc cos θ∗
v∗, (4.9)

D∗r(u
∗, v∗, w∗) ≡ Γ1∗

33

w∗2

g33

= − w∗2κc cos θ∗

1 + r∗κc cos θ∗
, (4.10)

D∗θ(u
∗, v∗, w∗) ≡ Γ2∗

33

r∗w∗2

g33

=
w∗2κc sin θ∗

1 + r∗κc cos θ∗
, (4.11)
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D∗z̃(u
∗, v∗, w∗) ≡ (u∗

∂w∗

∂r∗
+
v∗

r∗
∂w∗

∂θ∗
)(

1
√
g33

− 1)− w∗

g33

(u∗
∂
√
g33

∂r∗
− v∗

r∗
∂
√
g33

∂θ∗
)

+
∂p∗

∂z̃∗
(

1

g33

− 1) +
2w∗
√
g33

(Γ3∗
31u
∗ + Γ3∗

32

v∗

r∗
)

= (u∗
∂w∗

∂r∗
+
v∗

r∗
∂w∗

∂θ∗
)[

1

L(1 + rκc cos θ∗)
− 1]− w∗

g33

(u∗
∂
√
g33

∂r∗

−v
∗

r∗
∂
√
g33

∂θ∗
) +

∂p∗

∂z̃∗
(

1

L2(1 + rκc cos θ∗)2
− 1)

+
2w∗
√
g33

κc
cos θ∗u∗ − sin θ∗v∗

1 + r∗κc cos θ∗
. (4.12)

We propose that Eqns. (4.10) and (4.11) describe the secondary flows in a curved pipe.

To test this hypothesis, we evaluate these terms (D∗r and D∗θ) using velocities obtained from

a straight pipe, and compare the results to the velocities (u∗ and v∗) obtained directly from

a numerical simulation of the flow in a curved pipe. Physically, D∗r and D∗θ represent inertial

forces caused by the presence of the curvature, with units in Newtons when expressed in

dimensional form. The profiles of u∗ and v∗ are plotted in Fig. 4.1(a) and Fig. 4.1(b),

respectively. The iso-contours of D∗r and D∗θ are obtained by substituting the straight-pipe

velocity solutions into the expression for these terms. The results are shown in Fig. 4.1(c)

and Fig. 4.1(d). The qualitative similarity between Fig. 4.1(a) (Fig. 4.1(b)) and Fig. 4.1 (c)

(Fig. 4.1(d)) support the suggestion that the inertial terms identified above contribute to

the secondary flow in curved pipes. The inertial terms identified in this paper are consistent

with the centrifugal force terms discussed in Berger et al. [106]. It is also important to note

that D∗r and D∗θ do not include the terms v∗2/r∗ and u∗v∗/r∗, respectively. Although these

other terms were referred to as centrifugal force terms in Webster and Humphrey [107], it

seems as if their significance is found in their ability to promote instability, even in a straight

pipe.

The authors acknowledge that the procedure just described for identifying the secondary

flow terms in the equations is ad hoc. A more rigorous approach could try to isolate ex-

plicit, physically-meaningful terms in the momentum equations, in the same manner that

the Navier-Stokes equations in a rotating frame of reference involve the additional terms
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Figure 4.1: Contour plots of (a) u∗, (b) v∗, (c) D∗r , and (d) D∗θ at x = 60 of the periodically-
curved pipe (Re = 1000)
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ρ[Ω×Ω× r+2Ω× u] [108], which, respectively, consist of the centrifugal and Coriolis force

fields. (Ω, r and u are the vectors of angular velocity, position, and instantaneous rotating

frame velocity, respectively.) The present problem appears to be more complicated and the

foregoing analysis has been carried out only for insight.

4.2 Realizable k − ε Model For Flow in Curved Pipes

SA, SKE, and RKE models are applied to simulate turbulence flow in a 90◦ bend curved

pipe. The results show that RKE model has a better performance than the other two. The

test conditions are taken from Sudo [12] and consist of a 90◦ bend (Fig. 4.2) with δ = 1/4. The

pipe has a 100-diameter upstream tangent section and a 40-diameter downstream tangent

section. The results are compared in Fig. 4.3 for the static pressure coefficient, Cp, at 17.6

diameters upstream of the bend. The variable s is a pseudo coordinate direction, introduced

in this section for the purpose of describing the locations on the straight (tangent) portions

of the pipe. This consists of the upstream tangent (−1 ≤ s ≤ 0−) and the region after the

bend (0+ ≤ s ≤ 5). Note that θ = −90◦ is the convex side of the bend, while θ = 90◦ is the

concave side, which is consistent with the use in Sudo’s experiment. Fairly close agreement

between the methods is apparent. However, the RKE results match the experimental data

better than the results from SA and SKE for the three locations plotted in Figure 4.3. Thus,

the RKE model is used for subsequent pipe calculations in this paper.

4.3 Numerical Validations of the Developed CLSVOF Model

Numerical tests are presented in this section to verify and validate the accuracy and

stability of the CLSVOF method. The ε in Eq. (2.55) is set to 1.5∆x, where ∆x is the mesh

size in the x direction. The CLSVOF method is validated with two forms of convection

velocities: constant velocity and vortex velocity. Pure movements of interface are expected

without any deformation under constant velocity with the goal to validate the CLSVOF
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Figure 4.2: The sketch of a curved pipe with a 90◦ bend. CV implies “convex (inner) side”,
CC is “concave (outer) side”, (xc, yc) denotes the curvature center and R is the radius of
curvature

Figure 4.3: Longitudinal distribution of static pressure at the convex (θ = −90◦), concave
(θ = 90◦) and bottom (θ = 0◦) sides of the 90◦ bend (Re = 60, 000)
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code doesn’t have any artificial velocities on the momentum equations. The deformation of

interface happens under the vortex velocity. The results of the CLSVOF method developed

in this paper is compared with the CLSVOF method built in ANSYS FLUENT as well as

with some results in the literature.

4.3.1 Droplet movement due to a constant velocity field

A circle of fluid with a radius of 0.15 mm, initially centered at (−0.25, 0.25) in a unit

square domain. Wall boundary condition was set to all sides. Three types of constant

velocities are tested: (U = 1, V = 0), (U = 0, V = −1), and (U = 1, V = −1).The results

are shown in Figs. 4.4, 4.5, and 4.6. No deformation of droplet but only pure movement

is observed in all cases, which excludes the artificial movements when the velocity field is

constant.

4.3.2 Droplet deformation due to a vortex velocity field

Using the same conditions as in Rider’s work [52], the simulation of the time reversed

single vortex flow are presented. A circle of fluid with a radius of 0.15 mm, initially centered

at (0.5, 0.75) in a unit square domain, is deformed by a vortex velocity field defined by the

following stream function:

ψ(x, y) =
1

π
sin2[πx] sin2[πy] cos(πt/T ), (4.13)

where T is the period and the velocity components are defined by

U = −∂ψ
∂y
, V =

∂ψ

∂x
. (4.14)

Water is filled within the circle and air is outside the circle. A surface tension coefficient

of 0.1N/m was used for air-water. A no slip wall boundary condition was used for all
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Figure 4.4: Movement of circle of fluid under the velocity (U = 1,V = 0) in the developed
CLSVOF method and a grid of 128 ∗ 128 at (a) t = 0s, (b) t = 0.25s, (c) t = 0.5s, and
(d)t = 0.75s
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Figure 4.5: Movement of circle of fluid under the velocity (U = 0,V = −1) in the developed
CLSVOF method and a grid of 128 ∗ 128 at (a) t = 0s, (b) t = 0.25s, (c) t = 0.5s, and
(d)t = 0.75s
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Figure 4.6: Movement of circle of fluid under the velocity (U = 1,V = −1) in the developed
CLSVOF method and a grid of 128 ∗ 128 at (a) t = 0s, (b) t = 0.25s, (c) t = 0.5s, and
(d)t = 0.75s
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boundaries. Under the formation of the time periodic vortex velocity field, the largest

deformation of the circle of fluid happens at t = T/2 and it goes back to its initial shape

at t = T . This test can be used to access the code’s capacity to resolve the thin fluid

filaments formed by the interface stretching. The deformation reaches different levels when

the time period is different. Three different time periods were tested for the developed

CLSVOF method: T = 2.0s, T = 6.0, and T = 12.0s, using three different mesh densities:

128 ∗ 128, 256 ∗ 256, and 512 ∗ 512. Since detail simulation results of T = 6.0s is available in

Nichita’s developed CLSVOF method [49], here we compare the results of T = 6.0 among

the developed CLSVOF method in this paper, CLSVOF method in FLUENT and available

data in Nichita’s paper [49].

Figs. (4.7), (4.8), and (4.9) present the interface deformation with a time period of T = 2

on a grid of 128∗128, and 256∗256, and 512∗512 mesh points, respectively. Figs. (4.10) and

(4.12) present the interface deformation with a time period of T = 6 on a grid of 128 ∗ 128,

and 256 ∗ 256, and 512 ∗ 512 mesh points, respectively. Figs. (4.19) and (4.21) present the

interface deformation with a time period of T = 12 on a grid of 128 ∗ 128, and 256 ∗ 256,

and 512 ∗ 512 mesh points, respectively. All these results point out that the deformation of

droplet increases as the time period increases and breakup happens at large time period, e.g.

T = 12. The tip of the filament becomes sharper and the difference of enlarged comparison

between (a) and (c) smaller when mesh is finer. When mesh points is 512 ∗ 512, the droplet

goes back perfectly to its initial shape. Also, for the simulations with a time period of T = 6,

the results of ANSYS FLUENT are shown in Fig. (4.13) on a grid of 128 ∗ 128 mesh points,

and the results from Nichita’s simulations [49] are shown in Figs. (4.16), (4.17), and (4.18).

We can clearly see that the results of developed CLSVOF method are consistent to those in

ANSYSN FLUENT and Nichita’s simulations.
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Figure 4.7: Deformation of circle of fluid under the vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/2) in the developed CLSVOF method and a grid of

128 ∗ 128 at (a) t = 0s (b) t = 1s (c) t = 2s (d) enlarged comparison between (a) and (c)

Figure 4.8: Deformation of circle of fluid under the vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/2) in the developed CLSVOF method and a grid of

256 ∗ 256 at (a) t = 0s (b) t = 1s (c) t = 2s (d) enlarged comparison between (a) and (c)
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Figure 4.9: Deformation of circle of fluid under the vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/2) in the developed CLSVOF method and a grid of

512 ∗ 512 at (a) t = 0s (b) t = 1s (c) t = 2s (d) enlarged comparison between (a) and (c)

Figure 4.10: Deformation of circle of fluid under the vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/6) in the developed CLSVOF method and a grid of

128 ∗ 128 at (a) t = 0s (b) t = 3s (c) t = 6s (d) enlarged comparison between (a) and (c)
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Figure 4.11: Deformation of circle of fluid under the vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/6) in the developed CLSVOF method and a grid of

256 ∗ 256 at (a) t = 0s (b) t = 3s (c) t = 6s (d) enlarged comparison between (a) and (c)

Figure 4.12: Deformation of circle of fluid under the vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/6) in the developed CLSVOF method and a grid of

512 ∗ 512 at (a) t = 0s (b) t = 3s (c) t = 6s (d) enlarged comparison between (a) and (c)

68



Figure 4.13: Deformation of circle of fluid under the vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/6) in the CLSVOF method in ANSYS FLUENT and

a grid of 128 ∗ 128 at (a) t = 0s (b) t = 3s (c) t = 6s (d) enlarged comparison between (a)
and (c)

Figure 4.14: Deformation of circle of fluid under the vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/6) in the CLSVOF method in ANSYS FLUENT and

a grid of 256 ∗ 256 at (a) t = 0s (b) t = 3s (c) t = 6s (d) enlarged comparison between (a)
and (c)
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Figure 4.15: Deformation of circle of fluid under the vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/6) in the CLSVOF method in ANSYS FLUENT and

a grid of 512 ∗ 512 at (a) t = 0s (b) t = 3s (c) t = 6s (d) enlarged comparison between (a)
and (c)

Figure 4.16: Deformation of circle of fluid under the vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/6) from the Nichita’s simulation and a grid of 128 ∗ 128 at

(a) t = 0s (b) t = 3s (c) t = 6s (d) enlarged comparison between (a) and (c)
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Figure 4.17: Deformation of circle of fluid under the vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/6) from the Nichita’s simulation and a grid of 256 ∗ 256 at

(a) t = 0s (b) t = 3s (c) t = 6s (d) enlarged comparison between (a) and (c)

Figure 4.18: Deformation of circle of fluid under the vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/6) from the Nichita’s simulation and a grid of 512 ∗ 512 at

(a) t = 0s (b) t = 3s (c) t = 6s (d) enlarged comparison between (a) and (c)
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Figure 4.19: Deformation of circle of fluid under the vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/12) in the developed CLSVOF method and a grid of

128 ∗ 128 at (a) t = 0s (b) t = 6s (c) t = 12s (d) enlarged comparison between (a) and (c)

Figure 4.20: Deformation of circle of fluid under the vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/12) in the developed CLSVOF method and a grid of

256 ∗ 256 at (a) t = 0s (b) t = 6s (c) t = 12s (d) enlarged comparison between (a) and (c)
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Figure 4.21: Deformation of circle of fluid under the vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/12) in the developed CLSVOF method and a grid of

512 ∗ 512 at (a) t = 0s (b) t = 6s (c) t = 12s (d) enlarged comparison between (a) and (c)

4.4 Two Dimensional Jet Simulations Based on FLUENT

Code

Before starting the simulation of mercury jet for the Muon Collider project, two dimen-

sional jet is studied first to verify the FLUENT code, which will be applied for the mercury

jet simulation.

4.4.1 Two Dimensional Laminar Round Jet Flow

The two dimensional jet simulation studied in this part is a laminar round jet with the

advantage of analytical solution given by Schlichting[109]. The solved problem is shown

in Fig. 4.22. Air emerges into a still air from a circular orifice at x = 0. At any cross

section, the momentum flux is constant. Air jet spreads at constant pressure, which is 1 bar.

Temperature is constant 300 K. The Reynolds number based on the inlet velocity (0.64 m/s)
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Figure 4.22: Typical free 2D laminar round jet streamline pattern

is 400. The density of air is 1.16kg/m3 and kinematic viscosity is 1.610− 5m2/s.

The governing equations for the 2D laminar round jet flow are

∂u

∂x
+

1

r

∂(rv)

∂r
= 0 (4.15)

u
∂u

∂x
+ v

∂u

∂r

1

r

∂(rv)

∂r
≈ ν

r

∂

∂r
(r
∂u

∂r
) (4.16)

The analytical solution is

u =
3J

8πµx
(1 +

C2η2

4
)−2, (4.17)

where C ≡ ( 3J
16πρν2

)1/2, J = ρ
∫∞
−∞ u

22πrdr, and η = r
x
.

The boundary conditions for the 2D laminar round jet are shown in Fig. 4.23. Constant

axial velocity is assumed at the velocity inlet. The side edges on the inlet side are set as non-

slip wall. Considering the round jet, axis boundary condition is used for the center line and

only halved model for the simulation. The results of the 2D laminar round jet simulation are

analyzed as below. Figure 4.24 shows the center line velocity (uc) changes with the distance

(x) away from the jet nozzle. uc drops as x increases, roughly following the order of 1/x.

The radial distribution of mean stream velocity (u) at locations x = 10d,x = 30d, x = 50d,

x = 70d, and x = 90d are shown in Fig. 4.25. The numerical u is very close to theoretical u

at x = 30d, but the difference becomes bigger at more downstream locations. Jet half width

is defined as the radial distance from the axis to the position at the which the absolute

value of the axial velocity drops to half its value on the axis. The relationship between jet
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Figure 4.23: Boundary conditions settings for 2D laminar round jet

Figure 4.24: Center line velocity of the 2D round jet changes with the distance

half width and distance from the jet nozzle is mostly linear, which can be seen in Fig. 4.26.

Good jet self-similarity is observed in Fig.4.27 by plotting the flow profile along the radial

direction. Last, Fig. 4.28 shows the changes in momentum thickness at different locations

downstream of the jet. It is obvious can seen that the changing rate of momentum thickness

slows down at downstream of the jet.

4.4.2 Two Dimensional Laminar Plane Jet Flow

Schlichting also solved out the analytical solutions for a 2D laminar plane jet [109]. The

solved problem is shown in Fig. 4.29. Air emerges into a still air from a 2D slot at x = 0. At

any cross section, the momentum flux is constant. Air jet spreads at constant pressure, which

is 1 bar. Temperature is constant 300 K. The Reynolds number based on the inlet velocity

(0.64 m/s) is 400. The density of air is 1.225 kg/m3andkinematicviscosityis1.46073Ã10-

5m2/s.
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Figure 4.25: Radial distribution of the mean stream velocity of the 2D round jet at (a)
x/d = 10, (b)x/d = 30, (c) x/d = 50, (d) x/d = 70, and (e) x/d = 90. Note that u is
normalized by umax ( umax =max(u)) and radius r by jet inlet diameter d.

Figure 4.26: Half width of the 2D round jet changes with the distance. Note that r1/2 and
distance x are normalized by jet inlet diameter d.
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Figure 4.27: 2D round jet self-similarity

Figure 4.28: Momentum thickness of 2D round jet changes with distance. Note that θ and
distance x are normalized by jet inlet diameter d.

Figure 4.29: Typical free 2D laminar plane jet streamline pattern
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The governing equations for the 2D laminar plane jet are

∂ux
∂x

+
∂uy
∂y

= 0 (4.18)

ux
∂ux
∂x

+ uy
∂uy
∂r

≈ ν
∂2uy
∂y2

(4.19)

The analytical solution is

ux = (
3J2

32νx
)1/3 sech2(γ), (4.20)

uy = (
Jν

6x2
)1/3[2γ sech2(γ)− tanh(γ)], (4.21)

where γ ≡ ( J
48ν2

)1/3 y
x2/3

, and J =
∫∞
−∞ u

2dy.

The boundary conditions for the 2D laminar round jet are shown in Fig. 4.30. Constant

axial velocity is assumed at the velocity inlet. The side edges on the inlet side are set as

non-slip wall. Considering the symmetry of the jet, symmetry boundary condition is used

for the center line and only halved model for the simulation. The results of the 2D laminar

plane jet simulation are analyzed the same as the 2D laminar round jet. Figure 4.31 shows

the center line velocity (uc) changes with the distance (x) away from the jet nozzle. uc drops

with x roughly following the order x1/3. The radial distribution of mean stream velocity

(u) at locations x = 10d,x = 30d, x = 50d, x = 70d, and x = 90d are shown in Fig. 4.32.

The numerical u is very close to theoretical u at x = 30d, but diverges from the analytical

solution as flow is more downstream. The relationship between jet half width and distance

from the jet nozzle is mostly linear, which can be seen in Fig. 4.33. Good jet self-similarity

is observed in Fig.4.34 by plotting the flow profile along the radial direction. Last, Fig. 4.35

shows the changes in momentum thickness at different locations downstream of the jet. It is

obvious can seen that the changing rate of momentum thickness slows down at downstream

of the jet.
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Figure 4.30: Boundary conditions settings for 2D laminar plane jet

Figure 4.31: Center line velocity of the 2D plane jet changes with the distance
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Figure 4.32: Radial distribution of the mean stream velocity of the 2D plane jet at (a)
x/d = 10, (b)x/d = 30, (c) x/d = 50, (d) x/d = 70, and (e) x/d = 90. Note that u is
normalized by umax ( umax =max(u)) and radius r by jet inlet diameter d.
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Figure 4.33: Half width of the 2D plane jet changes with the distance. Note that r1/2 and
distance x are normalized by jet inlet diameter d.

Figure 4.34: 2D plane jet self-similarity

Figure 4.35: Momentum thickness of 2D round jet changes with distance. Note that /theta
and distance x are normalized by jet inlet diameter d.
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Figure 4.36: The boundary conditions for the 2D turbulent jet simulations

4.4.3 Two Dimensional Turbulent Jet Flow

In this part, the ability of FLUENT code in capturing the jet breakup is tested. An

axis-symmetric liquid jet flows into still gas with a mean bulk velocity of 100 m/s. The inlet

jet diameter is 100µm, thus the Reynolds number UD/νliquid is equal to 5800. Figure 4.36

shows the boundary conditions of the problem. The jet inlet uses constant velocity of 100

m/s. The width of the computational domain is chosen 3D or 5D, where D is the jet inlet

diameter. The length is 50D. The properties of the two phases are in table 4.1. To define

the mesh size, we assume that only primary break up occurs for the smallest droplet. This

implies that the Weber number is at least smaller that 10 [65], which gives to the minimum

mesh size of 2.36µm.

We ≡ ρu24x
σ

= 10⇒4x =
weσ

ρu2
=

10 ∗ 0.06

696 ∗ 100 ∗ 100
= 2.36µm (4.22)

With the grid spacing of 2.36µm, the uniform grid size is 127× 2120 for 3D width case and

212× 2120 for 5D width case.

Table 4.1: The properties of two phases in 2D turbulent jet simulation
phase Density Viscosity Surface Tension
Gas 25kg/m3 4× 10−7m2/s 0.06N/m

Liquid 696kg/m3 1.724× 10−6m2/s

VOF method is the built-in two-phase method in FLUENT code. Further, the current

ANSYS FLUENT 14.5 version has the CLSVOF method. Here, we apply both VOF and

CLSVOF method in FLUENT to simulate the 2D two-phase jet flow. Large-eddy simulations
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Table 4.2: The locations of the onset of turbulent breakup for 2D jet simulations in FLUENT
codes

Case Location of onset of turbulent breakup
3 Jet-Diameter in VOF 14D
3 Jet-Diameter in CLSVOF 1.6D
5 Jet-Diameter in VOF 11.6D
5 Jet-Diameter in VOF 0.4D

(LES) has been widely used to simulate turbulent jet flow and it seems to be a feasible

candidate to obtain the necessary unsteady date for jet [110, 111, 112, 113, 114, 115, 116, 117,

118, 119, 120, 121]. In LES, the scales of turbulent eddies larger than the computational mesh

spacing are computed directly. Eddies smaller than the grid spacing (subgrid scale eddies)

are modeled with an appropriate turbulence model. Therefore, more scales of turbulent

eddies can be modeled directly when mesh is finer, eg. direct numerical simulation (DNS)

solves all eddy scales. Here implicit large eddy simulation (ILES) is applied. Navier-Stokes

equations (NSE) are discretized through finite volumes on a fine mesh of the problem, which

is finer than that of LES but coarser than that of DNS. Discretization error appears in the

division term. There is no explicit filtering in ILES but the discretization provides top-hat-

shaped-kernel implicit filtering [122] ( 1
δVp

∫
ΩP
fdV , where δVp is volume of the mesh unit, ΩP

is the domain of the mesh unit). The resolved and subgrid scales are decoupled through the

numerics. ILES resolves large eddies and uses physics-capturing numerics.

Figures 4.37, 4.38, and 4.39 are results of 3D jet case using VOF method, while Figs. 4.40,

4.41 and 4.42 are results using CLSVOF method. The CLSVOF results have more jet

breakups and the onset location of breakup is closer to the jet inlet. So is the 5D jet

CLSVOF simulation, as shown in Figs. 4.43, 4.44,4.45, 4.46, 4.47, and 4.48. Table 4.2 gives

the locations of onset of turbulent breakup for 2D turbulent jet simulation in FLUENT

codes.

When 100 < Wel < 1.1 × 106, 3400 < Rel < 8.5 × 105, and 0.001 < OHl < 0.017, P.K

Wu worked out a surface breakup regime map for turbulent liquid jets in still gases, seen in

Fig. 4.49 [123], where We is Weber numbers, We = ρDU2

σ
and OH is Ohnesorge numbers,
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Figure 4.37: The contour of volume of fraction of liquid for the 3-jet-diameter simulation
in VOF method of FLUENT code. Note 3-jet-diameter simulation means the width of the
computational domain is 3 times the jet inlet diameter.

OH = µ√
ρDσ

. Also the equations for location of onset/end of turbulent breakup are given in

Fig. 4.49. The Wel, Rel, and OHl for the studied jet problem are

Wel =
ρlDU

2

σ
=

696× 0.0001× 1002

0.06
= 11600, (4.23)

OHl =
µl√
ρDσ

=

√
Wel
Rel

=

√
11600

5800
= 0.01857, (4.24)

which are within the considered range of Wu’s work. Therefore, the location of onset/end of

turbulent breakup for the studied problem is

xi = 2000We−0.67
l D = 3.783D (4.25)

xe = 1.58× 10−5We1.68
l D = 106.4D, (4.26)

where xi is the onset location and xe is the end location of breakup. Since the computational

domain only has a length of 50D, the calculated end location of breakup reaches as far as

106.4D (Eq. (4.26)). Therefore, only the onset location of breakup can be compared between

the calculation (Eq. (4.26)) and the simulation (4.2). Although both the VOF and CLSVOF

results of onset location are not 3.783D as in Eq. (4.26), the CLSVOF results leads to

a smaller value of x − i, which is much better than those of VOF results. In later jet

simulations, the CLSVOF model will be used for the two-phase flow model.
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Figure 4.38: The contour of axial velocity for the 3-jet-diameter simulation in VOF method
of FLUENT code. Note 3-jet-diameter simulation means the width of the computational
domain is 3 times the jet inlet diameter.

Figure 4.39: The contour of Z vorticity for the implicit LES 3-jet-diameter simulation us-
ing VOF multiphase model. Note 3-jet-diameter simulation means the half width of the
computational domain is 3 times the jet inlet diameter.

Figure 4.40: The contour of volume of fraction of liquid for the implicit LES 3-jet-diameter
simulation using CLSVOF multiphase model. Note 3-jet-diameter simulation means the half
width of the computational domain is 3 times the jet inlet diameter.
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Figure 4.41: The contour of axial velocity for the implicit LES 3-jet-diameter simulation
using CLSVOF multiphase model. Note 3-jet-diameter simulation means the half width of
the computational domain is 3 times the jet inlet diameter.

Figure 4.42: The contour of Z vorticity for the implicit LES 3-jet-diameter simulation using
CLSVOF multiphase model. Note 3-jet-diameter simulation means the half width of the
computational domain is 3 times the jet inlet diameter.

Figure 4.43: The contour of volume of fraction of liquid for the implicit LES 5-jet-diameter
simulation using VOF multiphase model. Note 5-jet-diameter simulation means the half
width of the computational domain is 5 times the jet inlet diameter.
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Figure 4.44: The contour of axial velocity for implicit LES 5-jet-diameter simulation us-
ing VOF multiphase model. Note 5-jet-diameter simulation means the half width of the
computational domain is 3 times the jet inlet diameter.

Figure 4.45: The contour of Z vorticity for the implicit LES 5-jet-diameter simulation us-
ing VOF multiphase model. Note 5-jet-diameter simulation means the half width of the
computational domain is 5 times the jet inlet diameter.

Figure 4.46: The contour of volume of fraction of liquid for the implicit LES 5-jet-diameter
simulation using CLSVOF multiphase model. Note 5-jet-diameter simulation means the half
width of the computational domain is 5 times the jet inlet diameter.
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Figure 4.47: The contour of axial velocity for the implicit LES 5-jet-diameter simulation
using CLSVOF multiphase model. Note 5-jet-diameter simulation means the half width of
the computational domain is 5 times the jet inlet diameter.

Figure 4.48: The contour of Z vorticity for the implicit LES 5-jet-diameter simulation using
CLSVOF multiphase model. Note 5-jet-diameter simulation means the half width of the
computational domain is 5 times the jet inlet diameter.
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Figure 4.49: Surface breakup regime map for turbulent liquid jets in still gases when aero-
dynamic effects are small (liquid/gas density ratios are larger than 500)
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Chapter 5

Results

5.1 Mercury Internal Flow in A Curved Pipe Without A

Weld

5.1.1 Problem description

Since mercury flow becomes fully-developed long before approaching the first 90◦ half-

bend angle, this geometry has been simplified by shortening the inflow section. The eight

geometries investigated (Fig. 1.3) have length dimensions that are the same as in the MERIT

experiment: the pipe radius is a, curvature radius R = 2.33a, and the inflow and outflow

lengths of straight pipe are matched, with or without a nozzle at the exit region. The half-

bend angles ϕ1/ϕ2 investigated are 0◦/0◦, 30◦/30◦, 60◦/60◦, and 90◦/90◦. The Reynolds

number based on the bulk velocity and pipe diameter is approximately equal to 8.244× 105

and the Dean number is 5.401× 105.

A full model is tested for the pipe without a weld, whereas symmetry conditions are

used for the pipe without or with a nozzle, allowing the use of half of the model, to save on

computational cost. The computational grid points are 3.7× 106 ∼ 5× 106 and 3.9× 106 ∼

6× 106 for pipes of various turning angles without and with nozzles, respectively. There are
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Figure 5.1: Radial distribution of the U∗ as a function of location along the 0◦/0◦ pipe

48 grid points in the circumferential direction and the grid density is 1.8◦/ node for the half-

bend angle. The distance of the first grid point adjacent to the wall is decided by y+ ≈ 1,

where y+ ≡ uτy/ν, uτ is the friction velocity at the wall, y is the distance to the wall and

ν is the local kinematic viscosity of the fluid. Approximately 15 grid points are within the

inner layer. The boundary conditions have been described in the Chapter 2 of this paper.

5.1.2 Axial velocity distribution

As studied earlier, the pseudo coordinate distance, s, is used to describe the locations of

points in the straight portions of the pipe, while the bend angles, ϕ1 and ϕ2, are used for the

curved portions. These coordinates are depicted in Figure 1.2. The upstream tangents of all

the curved pipes investigated in this paper are of the same length (−5.17 ≤ s ≤ 0−). So are

the downstream tangents (0+ ≤ s ≤ 8.3375). Figure 5.1 - Figure 5.4 show the radial (r∗)

axial-velocity (U∗) distribution for pipes without a nozzle. The effects of the bend angle on

flow in the curved pipes are presented only for the cases without nozzles in order to isolate

the complication of the nozzles.

In Fig. 5.1, the velocity distribution is identical for the three values of distance s examined,

since there is no bend and the flow has already reached the fully developed profile by the inlet

of the pipe. The 30◦/30◦, 60◦/60◦, and 90◦/90◦ pipes are also imposed the fully developed

flow at the inlet, which is a similar, symmetrical, radial distribution of U∗, shown in Fig. 5.1.

At the start of the first half-bend (“Bend Starts” for 30◦/30◦ (Fig. 5.2), “Bend Starts” for
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Figure 5.2: Radial distribution of U∗ as a function of location along the 30◦/30◦ pipe

Figure 5.3: Radial distribution of U∗ as a function of location along the 60◦/60◦ pipe

Figure 5.4: Radial distribution of U∗ as a function of location along the 90◦/90◦ pipe
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60◦/60◦(Fig. 5.3), and “Bend Starts” for 90◦/90◦ (Fig. 5.4)), the convex (inner) side of the

pipe (near r∗ = −1) shows higher magnitudes of U∗. At the end of the first half-bend

(ϕ1 = 30◦ for 30◦/30◦ (Fig. 5.2), ϕ1 = 60◦ for 60◦/60◦(Fig. 5.3) maintains its direction at the

start of the bend, but with reduced magnitude. That is, at “Bend Starts” and at ϕ1 = 30◦

for the 30◦/30◦ pipe (Fig. 5.2), ∂U∗/∂r∗ is negative with a magnitude that is smaller for

ϕ1 = 30◦ relative to “Bend Starts”. Similarly, for the 60◦/60◦ (Fig. 5.3) pipe, ∂U∗/∂r∗ is

negative with a reduced magnitude at ϕ1 = 60◦. However, for the 90◦/90◦ (Fig. 5.4) pipe,

∂U∗/∂r∗ changes its direction at ϕ1 = 90◦. That is ∂U∗/∂r∗ is positive with high velocity

region at the center of pipe. For all curved pipes, ∂U∗/∂r∗ is negative, and the high velocity

region is located near the concave side (r∗ = 1) as the flow leaves the second half bend.

Actually, for the 90◦/90◦ pipe, the high velocity region moves to the concave side (r∗ = 1)

before the flow leaves out of the second half bend (Fig. 5.4)).

In Fig. 5.5 - Fig. 5.9, the effects of having a nozzle at the exit are shown. For the straight

pipe, the nozzle causes a symmetric velocity profile respect to the radial direction, as we move

downstream through the pipe (Fig. 5.5). The flow develops complicated patterns (back flow)

near the inner side of the half-bend, with one turning point in the velocity profile for both

curved pipe with and without a nozzle. The back flow is stronger in the pipe of larger

half bend angle. However, the existence of the second half-bend recovers the oscillation (in

r∗ = −1) for all curved pipes. That is to say back flow is weaker at the same relative locations

after the second half-bend as those after the first half-bend. Take the 90◦/90◦ pipe as an

example, the back flow near the convex side (r∗ = −1) is stronger in ϕ1 = 90◦ (Fig. 5.8(d))

than in ϕ2 = 90◦ (Fig. 5.9(g)). At the exit plane (s = 8.3375), the flow in the pipes with

nozzles tend to have higher velocities in the −0.9 < r∗ < 1 region, the velocity profile is

uniform radially, and the wall boundary layer is much thinner, when compared with those

without a nozzle (Fig. 5.5(c), Fig. 5.6(e), Fig. 5.7(e), and Fig. 5.9(g)). The results show

that the effect of the nozzle on the upstream flow is extremely weak. The nozzle only comes

into effect on the flow at the beginning of the nozzle (s = 4.032). The decreasing cross-
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Figure 5.5: Comparison of radial distribution of U∗ at the same location along the 0◦/0◦

pipe without (square symbols) and with (delta symbols) a nozzle: (a)s = 0− (b)s = 4.032
(c)s = 8.3375

sectional area of the nozzle along the flow path leads to a decrease in the static pressure.

The flow being subsonic, the velocity profile becomes sloper at the beginning of the nozzle

(s = 4.032). The 90◦/90◦ pipes are further investigated in Fig. 5.10 and 5.11 because of the

current application in the MERIT experiment (90◦/90◦). The velocity distribution is similar

for these two cases until the nozzle appears (s = 4.032). At the end of the first bend, the

axial velocity magnitude increases near the concave side while decreasing near the convex

side. This pattern is caused by the cross-stream pressure gradient. Once the high velocity

fluid encounters the adverse pressure gradient on the convex side, it starts to move towards

the concave side (The abbreviations “CC” and “CV” are used in these figures to denote the

concave and convex sides, respectively.) . The flow becomes more and more stratified toward

the exit (s = 8.3375) when the effect of the bend becomes insignificant.
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Figure 5.6: Comparison of radial distribution of U∗ at the same location along the 30◦/30◦

pipe without (square symbols) and with (delta symbols) a nozzle: (a)s = 0− (b)ϕ1 = 30◦

(c)ϕ2 = 30◦ (d)s = 4.032 (e)s = 8.3375
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Figure 5.7: Comparison of radial distribution of U∗ at the same location along the 60◦/60◦

pipe without (square symbols) and with (delta symbols) a nozzle: (a)s = 0− (b)ϕ1 = 60◦

(c)ϕ2 = 60◦ (d)s = 4.032 (e)s = 8.3375
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Figure 5.8: Comparison of radial distribution of U∗ at the same location along the 90◦/90◦

pipe without (square symbols) and with (delta symbols) a nozzle: (a)s = 0− (b)ϕ1 = 30◦

(c)ϕ1 = 60◦ (d)ϕ1 = 90◦ (e)ϕ2 = 0◦
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Figure 5.9: Comparison of radial distribution of U∗ at the same location along the 90◦/90◦

pipe without (rectangular symbols) and with (triangular symbols) a nozzle: (f)ϕ2 = 90◦

(f)s = 4.032 (g)s = 8.3375
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Figure 5.10: The contour of U∗ as function of location along the 90◦/90◦ without a nozzle
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Figure 5.11: The contour of U∗ as function of location along the 90◦/90◦ with a nozzle
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5.1.3 Momentum thickness

One goal of the present study is to determine the pipe configuration that has the potential

to give the least disturbance in the circular jet shear layer that eventually issues from the

nozzle. Therefore, some knowledge of the distribution of the momentum thickness δθ at the

nozzle exit becomes important. For example, linear stability analysis of Michalke [126] and

Plaschko [127] and the experimental work of Cohen and Wygnanski, [128] Corke et al., [129]

and Corke and Kusek [130] showed that for large 2a/δθ (2a/δθ � 1), both axisymmetric

(m = 0) and the first spinning or helical instability modes (m = ±1 or −1) are unstable in

the initial jet shear layer.

The polar distribution of δθ is shown in Fig. 5.12 and Fig. 5.13 for pipes without and

with a nozzle, respectively. The number “0” in the polar plots refers to the wall, while the

numbers “1”, “2”, and “3” respectively refer to the distances 0.1a, 0.2a, and 0.3a measured

from the wall. Momentum thickness decreases with decreasing radius. For pipes without a

nozzle (Fig. 5.12), the distribution of δθ is nonuniform at the exit but similar. The azimuthal

variation of δθ becomes stronger as the half-bend angle increases. Thus 90◦/90◦ shows the

strongest azimuthal variation of δθ compared to other pipes. At the exit plane, δθ attains its

minimum value at θ = 0◦ and its maximum value at θ = 180◦. Note that the straight pipe

does not show an azimuthal variation of δθ. Figure 5.13 shows a fairly uniform δθ distribution

for all pipes, when nozzles are present at the exit.

The differences in the azimuthal variation of δθ can be explained by the relationship

between momentum thickness and axial velocity, where the latter, at pipe exit, is shown in

Figs. 5.2-5.4 for the various pipe configurations. Note that the 90◦/90◦ pipe shows the most

asymmetry in the distribution of the axial velocity (Fig. 5.4), and hence in the azimuthal

distribution of δθ. For pipes with nozzles, the axial velocity profile is fairly uniform in the

azimuth, which explains the uniform azimuthal distribution of δθ.
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Figure 5.12: Momentum thickness distribution at the exit plane of pipes for turning angles of:
(a)0◦/0◦ (b)30◦/30◦ (c)60◦/60◦ (d)90◦/90◦. These pipes do not have nozzles and θ = 180◦,
0◦ correspond to the convex and concave sides of the pipes, respectively

Figure 5.13: Momentum thickness distribution at the exit plane of pipes for turning angles
of: (a)0◦/0◦ (b)30◦/30◦ (c)60◦/60◦ (d)90◦/90◦. These pipes have nozzles and θ = 180◦, 0◦

correspond to the convex and concave sides of the pipes, respectively
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5.1.4 Turbulence intensity

The turbulence intensity at the exit of pipe is of interest, as it determines the turbulence

level in the jet. This quantity is defined in this paper as

I =

√
2

3
(
k

U2
b

), (5.1)

where k is the turbulence kinetic energy per unit mass and Ub has been used as a scale for

úrms, the root-mean-squared fluctuating velocity. The radial distribution of I at the exit

plane along the horizontal direction is presented in Fig. 5.14. I is found to have high values

near the walls, with a large gradient for all pipes. It is clear to see that I is reduced when

having a nozzle. For the pipe without a nozzle, I increases as the half-bend angle increases.

For example, the 90◦/90◦ pipe has the strongest turbulence intensity. The radial distribution

of I is symmetrical for the straight pipe (0◦/0◦), with a flat interior, as expected. The profile

of I with r∗ along the horizontal direction for the 30◦/30◦, 60◦/60◦, and the 90◦/90◦ pipes

without nozzles, shows higher values near r∗ = −1 (concave side) compared to r∗ = 1 (convex

side). The higher values of I on the convex side for the 60◦/60◦ pipe without a nozzle are

related to the instabilities associated with adverse pressure gradient. With nozzles, there is

a steeper radial gradient of I near wall in the 0◦/0◦, 30◦/30◦, 60◦/60◦, and 90◦/90◦ pipes

compared to those without nozzles. I is nearly flat in the interior region (−0.6 < r∗ < 0.6).

In the region of −1 < r∗ < −0.6, I has relatively higher values as the half-bend angle

decreases from nonzero value. Generally speaking, the straight pipe with a nozzle is the pipe

with least turbulence intensity among all eight pipes.

5.1.5 Discussions

The objective of this study is to comparatively evaluate various pipe configurations that

have been proposed for liquid target delivery in the Muon Collider project. The desirable

configurations are those that lead to the weakest turbulence intensity levels and the smallest
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Figure 5.14: The horizontal distribution of turbulence intensity at the exit plane. Subscripts
“with” and “without” denote presence or absence of a nozzle at pipe exit

momentum thickness at the exit plane. Eight pipe configurations with different turning

angles are studied, without and with a nozzle at the exit region of the pipe. A simple

analytical study is performed to describe the laminar flow in curved pipes, in relation to

the terms representing curvature effects. The realizable k− ε (RKE) RANS model has been

applied to simulate turbulent flows in the pipes. At the exit plane of the pipe without

a nozzle, δθ is smaller at θ = 0◦ relative to the value at θ = 180◦ (Figure 5.12), where

a lower level of turbulence intensity occurs. The effects of nozzle include the azimuthal

homogenization of the flow, and hence a uniform velocity, as well as a uniform azimuthal

distribution of δθ. The nozzle also significantly reduces the turbulence intensity at the pipe

exit. However, the straight pipe has the least turbulence intensity, because of the absence

of secondary flows. From the effects of bend and nozzle shown in this study, a straight pipe

with a convergent nozzle was found to have the weakest turbulence intensity level at the exit

plane.
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5.2 Mercury Internal Flow in A Curved Pipe With A

Weld

5.2.1 Problem Description

From the borescope video of the interior of the titanium nozzle for the Muon Collider

project, ominous weld beads are visible. It seems like these “turbulators” are responsible

for much of the poor performance of the jet. The key issue is the azimuthal symmetry

of the bead. As a start, an azimuthally symmetric bead is modeled for the 90◦/90◦ pipe.

Then nozzle with beads more closer to reality are modeled, which is azimuthally asymmetric,

for example a 30◦ azimuthal bead with its center transverse to the bend plane. Both the

azimuthally symmetric and asymmetric beads locate close to the beginning of the nozzle

taper and have a semicircle cross-section, as illustrated in Figure 5.15 (a) and (b) respectively.

We can see that the inner radius of the semicircle bead is 1/16 inches.

5.2.2 Computation of the pipe simulation with an azimuthal com-

plete weld

In order to find proper mesh for the pipe simulation with a weld, a mesh independence

check has been carried out to the 90◦/90◦ pipe with an azimuthally symmetric bead, as

shown in Fig. 5.16. The results of turbulent intensity, I, at the pipe exit are very consistent

when the grid number is 2.5 million and 3.2 million.The information of a proper mesh density

in the directions of r∗, θ , and z̃∗ for a bend pipe simulation with weld is achieved and the

pipe simulation is independent of mesh when grid number is 2.5 million.

The effects of the azimuthal symmetry semicircle bead/weld are studied by comparing

the I (turbulence intensity) at the exits of the pipe with/without a weld. The comparison

can be found in Fig. 5.17. It is clear to see that the turbulence level is higher at the center

region of the pipe in the case of the pipe with a weld, which implies the weld disturbs the

105



Figure 5.15: (a) Location of the studied bead in the 90◦/90◦ pipe (b) Dimension of the
semicircle bead
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Figure 5.16: Mesh independence check for the pipe with an azimuthally symmetric bead

flow resulting in a more turbulent flow. The large gradient of velocity near the wall of the

pipe makes flow really turbulent, which is same for the pipe with or without a weld. The

effects of bend do not retain at the pipe exit no matter the existence of the weld, which can

tell by the less asymmetric distribution of I in the direction of r∗.

5.2.3 Computation of the pipe simulation with an azimuthal incom-

plete weld

The geometry of 90◦/90◦ pipe with an azimuthally asymmetric 30◦ weld is shown in figure

5.18. The 30◦ bead locates at the same location along the flow direction as the 360◦ bead

does. The inner diameter as well as the geometry of the bead are consistent with these of

the 360◦ bead but just have a azimuthal length of 30◦ instead of 360◦.

Four different meshes are applied to the simulation when the pipe has a 30◦ weld. The

total mesh grids go from very coarse 0.7 million to very fine 16 million. The later simulations

are carried out for all four different mesh grids. It turns out a mesh independence for the

pipe with a 30◦ weld when grid number reaches 5 million. The analyses of asymmetric weld
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Figure 5.17: Comparison of turbulence intensity between the pipe without a weld and the
pipe with an azimuthally symmetric weld

Figure 5.18: The 90◦/90◦ pipe with an azimuthally asymmetric 30◦ bead/weld
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calculations are carried on for the following parameters:

(1) Wall shear stress, τw, is calculated by

τw = µ
∂U

∂n
|w, (5.2)

where ∂U
∂n
|w is velocity gradient at the wall. From the wall shear stress, a velocity scale, Uw

(friction velocity or called shear velocity), is introduced

Uw =

√
τw
ρ
. (5.3)

The shear velocity characterizes the turbulence strength, urms, and laminar sub-layer

thickness at the boundary, δS

urms ∼ U∗ (5.4)

δS = 5ν/U∗. (5.5)

(2) Turbulence kinetic energy (TKE), k, is the mean kinetic energy per unit mass asso-

ciated with eddies in turbulent flow. Generally, the turbulent kinetic energy is calculated by

the mean of the turbulence normal stresses:

k =
1

2
(ú2 + v́2 + ẃ2). (5.6)

(3) Momentum thickness, δθ, is the distance by which a surface would have to be moved

parallel to itself towards the reference plane in an inviscid fluid stream of velocity Umax to

give the same total momentum as exists between the surface and the reference plane in a

real fluid.

δθ =
∫ a

0

U

Umax

(1− U

Umax

)dr. (5.7)

The distribution of the wall shear stress (τw), kinetic energy of turbulence (k), kinetic
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energy dissipation rate (ε), the mean velocity (U), and the friction velocity (Uw) from the

beginning to the end of pipe is shown in Figs. 5.19 and 5.20 for the top line distribution and

bottom line distribution respectively. The top line is defined on the pipe surface passing

through the middle of the weld, while the bottom line is on the pipe surface far away from

the top line, as shown in Fig. 5.21. The “S” on the x-axis of these figures is defined as the

normalized arc length by the pipe diameter at the inlet. The results are compared among

four different mesh densities: 0.7 million, 3 million, 5 million, and 16 million. The results

of 5 million case and 16 million case show good agreements for the variable distributions,

indicating the mesh independence is achieved when the grid number reaches 5 million. The

top line distribution of τw, k, ε, U , and Uw (Fig. 5.19) presents a local drop at roughly

S = 13, where exactly the 30◦ weld centers. However there is no changes to the distribution

of k and ε at S = 13 on the bottom line, as shown on Fig. 5.20, which implicates the effects

of the 30◦ weld are too week to influence the flow on the other side far away from the weld.

Downstream the 30◦ weld, τw, k, ε, and Uw except U keep increasing fast along both top and

bottom lines until S = 16.62, where the narrowest straight part of the nozzle starts.

Figs. 5.22 and 5.23 give the detail distribution of τw, k, ε, U , and Uw along two orthogonal

lines passing through the middle of the weld. The locations of the two orthogonal lines on

the weld surface are shown in Fig. 5.24. The mesh independence is supported again by the

agreements between the 5 million case and 16 million case in the two figures. The distribution

of τw, k, ε, U , and Uw along the line of constant Z (Fig. 5.22) is almost symmetry with the

exception that near wall the magnitude of τw, k, ε, U , and Uw is smaller on the outer side

(Y = −0.0716) than the inner side (Y = −0.0664) of the pipe. However, this difference

is very small seen from the Fig. 5.22. Also for the distribution of τw and Uw, the lowest

value at the pipe center region (−0.0706 < Y < −0.0666) locates slightly to the outer side

(Y = −0.0716) of the pipe. These implies that the downstream effects of the bends still

remain upto the location of the 30◦ weld but are not significant any more. Along the line

of constant Y in the weld region, the magnitude of τw, k, ε, U , and Uw is much larger in
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Figure 5.19: The distribution of wall shear stress, turbulent kinetic energy, turbulent dissi-
pation rate, mean axial velocity, and friction velocity along the top line on the pipe wall
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Figure 5.20: The distribution of wall shear stress, turbulent kinetic energy, turbulent dis-
sipation rate, mean axial velocity, and friction velocity along the bottom line on the pipe
wall
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Figure 5.21: The locations of top and bottom lines on the pipe wall

the upstream than in the downstream of the weld. This can be well explained by the flow

separation. When pressure in the direction of flow increases, known as an adverse pressure

gradient, the boundary layers tend to separate from a surface. As a result of the increasing

fluid pressure, the potential energy of the fluid increases, leading to a decreased kinetic

energy. When boundary layer separation happens, the boundary layer thickens, resulting in

a reduced wall shear stress.

The exit of the nozzle is akin to the start of the jet flow, therefore the distribution of k

and δθ at the pipe exit is close to subsequent jet flow study as shown in Figs. 5.25 and 5.26

respectively. After the convergent nozzle, both the distribution of k and δθ are very uniform,

although the magnitude of k and δθ differs among different meshes. Also two planes normal

to the pipe axis in the vicinity of the weld, as shown in Figs. 5.27 are chosen to check the

distribution of k and δθ in the vicinity of the weld. The plane of z = 0.0430405 is upstream

compared to the plane of z = 0.0380405. Compared with the high magnitude region of k at

the weld location on the plane of z = 0.0430405 (Fig. 5.28), the magnitude of k increases

by 200% on the plane of z = 0.00380405 (Fig. 5.29) at the same weld location. k at the

pipe center doesn’t changes neither magnitude nor the position of its biggest magnitude. δθ
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Figure 5.22: The distribution of wall shear stress, turbulent kinetic energy, turbulent dissi-
pation rate, and friction velocity along the constant Z line across the weld center
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Figure 5.23: The distribution of wall shear stress, turbulent kinetic energy, turbulent dissi-
pation rate, and friction velocity along the constant Y line across the weld center

Figure 5.24: The locations of top and bottom lines on the pipe wall crossing the weld center
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Figure 5.25: Distribution of k at the pipe exit when grid number is (a) 0.7 million (b) 3
million (c) 5 million (d)16 million

increase locally in the vicinity of the 30◦ weld (90◦ location in Fig. 5.30), which is caused

by the thicken boundary layer when flow separation happens. Also δθ increases smoothly

and is locally symmetry in the nearby region of 180◦ location (Fig. 5.31). Other than these

locations, δθ keeps the same values before and after the weld.

5.2.4 Study On the Effects of Bend And Weld

In order to study the effects of bend and weld on the internal pipe flow, three types of

pipe flows are chosen for the discussions: straight pipe without a weld, 90◦/90◦ pipe without

a weld, and 90◦/90◦ pipe with a 30◦ weld. Static pressure, wall shear stress, axial velocity,

momentum thickness, turbulence intensity, and turbulent kinetic energy dissipation rate are

analyzed for the flows in these three pipes.

Static Pressure Develops From the Inlet to the Outlet of the Pipe

The static pressure difference between the inlet and the outlet of the pipe is almost the

same for all three cases. The pressure loss is 297 Pa for the straight pipe without a weld,
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Figure 5.26: Distribution of δθ at the pipe exit when grid number is (a) 0.7 million (b) 3
million (c) 5 million (d)16 million

Figure 5.27: Locations of two constant Z planes in the vicinity of the 30◦ weld
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Figure 5.28: Distribution of k on the plane of z = 0.0430405 when grid number is (a) 0.7
million (b) 3 million (c) 5 million (d)16 million

Figure 5.29: Distribution of k on the plane of z = 0.0380405 when grid number is (a) 0.7
million (b) 3 million (c) 5 million (d)16 million
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Figure 5.30: Distribution of δθ on the plane of z = 0.0430405 when grid number is (a) 0.7
million (b) 3 million (c) 5 million (d)16 million

Figure 5.31: Distribution of δθ on the plane of z = 0.0380405 when grid number is (a) 0.7
million (b) 3 million (c) 5 million (d)16 million
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Figure 5.32: Center line and line along the wall (over the weld) of the pipe (a) straight pipe
without a weld, (b) 90◦/90◦ pipe without a weld, and (c) 90◦/90◦ pipe with a 30◦ weld

301 pa for the 90◦/90◦ pipe without a weld, and 301 pa for the 90◦/90◦ pipe with a 30◦ weld.

This tells little effects of bend and weld on the change of static pressure.

In more detail, static pressure from inlet to outlet of the pipe are analyzed along the

center line of the pipe as well as the line along the wall (over the weld), whose locations are

shown in Fig. 5.32. Fig. 5.33 is the static pressure change along the center line as well as

the enlarged plot near the weld location. And Fig. 5.34 is the plot along the line on the wall

over the weld and the near-weld enlarged plot. In general, the distribution of static pressure

doesn’t have too much difference for the three pipes but only differs a little near the weld

location: for the bend pipe with/without a weld, the static pressure only differs along the

wall, while the static pressure of a straight pipe differs from that of bend pipes along both

the center line and the line on the wall.

Wall Shear Stress Changes From the Inlet to the Outlet of the Pipe

Figure 5.35 shows the wall shear stress change from the inlet to the outlet of the pipe

along the wall. The wall shear stress of the straight pipe without a weld behaves differently
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Figure 5.33: Static pressure changes along the center line (a) from inlet to outlet of of the
three studied pipes and (b) enlarged plot near the weld location (weld centers at s = 12.482).
“CL_ 0” is the center line along the straight pipe without a weld, “CL_ 90” is the center
line along the 90◦/90◦ pipe without a weld, and “CL_ 90+weld” is the center line along the
90◦/90◦ pipe with a 30◦ weld
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Figure 5.34: Static pressure changes along the line on the wall (a) from inlet to outlet of
of the three studied pipes and (b) enlarged plot near the weld location (weld centers at
s = 12.482). “TL_ 0” is the line along the wall of the straight pipe without a weld, “TL_
90” is the line along the wall of the 90◦/90◦ pipe without a weld, and “TL_ 90+weld” is the
line along wall of the 90◦/90◦ pipe with a 30◦ weld
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Figure 5.35: Wall shear stress changes along the line on the wall from inlet to outlet of of
the three studied pipes. “TL_ 0” is the line along the wall of the straight pipe without a
weld, “TL_ 90” is the line along the wall of the 90◦/90◦ pipe without a weld, and “TL_9
0+weld” is the line along wall of the 90◦/90◦ pipe with a 30◦ weld

from that of other two bend pipes starting from s = 5.17 (the location of the first bend) to

s = 15 (after the weld). The difference of wall shear stress only exists near the location of

weld for the two bend pipes.

Plots Near the Vicinity of the Weld Location

The axial velocity, momentum thickness, turbulence intensity, and turbulent kinetic en-

ergy dissipation rate are plotted at four s locations for the studied three pipes. Figure 5.36

gives the locations of the four s planes: s = 12.478 (before the weld), s = 12.482 (middle of

the weld), s = 12.601 (after the weld), and s = 17.892 (the exit). Figures 5.37, 5.38, and

5.39 are the axial velocity plots of straight pipe without a weld, the 90◦/90◦ pipe without

a weld, and the 90◦/90◦ pipe with a 30◦ weld, respectively. The bend pipes have asymme-

try distributions of axial velocity when flow passes through the bends. Further, back flow

happens before the weld and even enhances after the weld for the bend pipe with a weld.

Flow becomes uniform distributed after the nozzle for all the three pipes. Figures 5.40, 5.41,

and 5.42 are plots of the momentum thickness of the three pipes. It shows a consistent

uniform distribution of momentum thickness at all four s locations for the three pipes. The

plots of turbulence intensity for the three pipes are shown in Figs. 5.43, 5.44, and 5.45. The
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Figure 5.36: Planes at s = 12.478, s = 12.482, s = 12.601, and the exit (s = 17.892). (a)
y − z view of the plane locations, (b) default view of the plane locations, and (c) enlarged
view of the plane locations in the vicinity of a weld

turbulence intensity at exits of pipes without welds reduces compared to other s locations.

However, the turbulence intensity increases at the exit of the pipe with a weld. In common,

all three pipes have nozzles. It seems that nozzle reduces the turbulence intensity of the

flow, while the weld makes the flow more turbulent. Turbulent kinetic energy dissipation

rate increases at the exits of all three pipes, as shown in Figs. 5.46, 5.47, and 5.48.

5.3 Mercury Turbulent Jet Flow

Mercury flow comes out of the target delivery pipe and forms a free jet. The sketch of the

mercury free jet with MHD (magnetohydrodynamic) and energy deposition for the MERIT

experiment is shown in Fig. 5.49. The mercury jet study in this paper doesn’t consider MHD

and energy deposition but only mercury-air two-phase jet flow, which is the base line of the

complicated real jet problem in MERIT experiment.
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Figure 5.37: Contour of axial velocity for the straight pipe without a weld at (a)s = 12.478,
(b) s = 12.482, (c) s = 12.601, and (d) exit

Figure 5.38: Contour of axial velocity for the 90◦/90◦ pipe without a weld at (a)s = 12.478,
(b) s = 12.482, (c) s = 12.601, and (d) exit
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Figure 5.39: Contour of axial velocity for the 90◦/90◦ pipe with a 30◦ weld at (a)s = 12.478,
(b) s = 12.482, (c) s = 12.601, and (d) exit

Figure 5.40: Plot of momentum thickness for the straight pipe without a weld at (a)s =
12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit
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Figure 5.41: Plot of momentum thickness for the 90◦/90◦ pipe without a weld at (a)s =
12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit

Figure 5.42: Plot of momentum thickness for the 90◦/90◦ pipe with a 30◦ weld at (a)s =
12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit
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Figure 5.43: Contour of turbulent intensity for the straight pipe without a weld at (a)s =
12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit

Figure 5.44: Contour of turbulent intensity for the 90◦/90◦ pipe without a weld at (a)s =
12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit
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Figure 5.45: Contour of turbulent intensity for the 90◦/90◦ pipe with a 30◦ weld at (a)s =
12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit

Figure 5.46: Contour of turbulent kinetic energy dissipation rate for the straight pipe without
a weld at (a)s = 12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit
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Figure 5.47: Contour of turbulent kinetic energy dissipation rate for the 90◦/90◦ pipe without
a weld at (a)s = 12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit

Figure 5.48: Contour of turbulent kinetic energy dissipation rate for the 90◦/90◦ pipe with
a 30◦ weld at (a)s = 12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit

130



Figure 5.49: Sketch of the mercury free jet with MHD and energy deposition for the MERIT
experiment

5.3.1 Two Dimensional Mercury Turbulent Jet Flow

A 2D mercury jet into air is studied first. When only assume the primary breakup, the

critical liquid Weber number is less than 10 [65]. Therefore, we can know the smallest mesh

size required for capturing jet break up is 0.9µm:

We ≡ ρu24x
σ

= 10⇒4x =
weσ

ρu2
=

10 ∗ 0.4855

13456 ∗ 20 ∗ 20
= 0.9µm ≈ 8.86 ∗ 10−5D, (5.8)

where D is the jet diameter.

From the mercury jet sketch in the MERIT experiment (Fig. 5.49), we can get the side

view of mercury jet flow on the y − z plane in both dimension (Fig. 5.50(a)) and non-

dimension (Fig. 5.50(b)). The real mercury jet problem has a computational domain with a

width of 15D and a length of 124.4D. With the mesh size requirement (Eq. 5.8), it would

need a mesh grid number of 2.44 ∗ 1011 when mesh is uniform. Therefore, we reduced the

lengths of the computational domain with the least influences on the jet flow. Also, a halved

model is applied when considering a axis boundary condition for the center line. Also the

computational domain is reduced in length, width, and height, seen in Fig. 5.51. Figure. 5.52
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Figure 5.50: The Side view of mercury jet flow (a)in dimension (b)normalized by jet inlet
diameter

Figure 5.51: Simplified two dimensional mercury jet model with reduced length, width, and
height

shows the boundary conditions for the 2D mercury jet simulation. The velocity profile at

the outlet of a straight nozzle pipe is assumed (Fig. 5.53) at the inlet of the jet flow. The

result of αHg is shown in Fig. 5.54, which has very rich jet breakups.

5.3.2 Three Dimensional Mercury Turbulent Jet Flow

Figure 5.55 is the schematics of target delivery system in MERIT experiment. The

simulation of a three dimensional mercury jet using the length, width, and height in Fig. 5.55

would lead to a total mesh grid number of 6.8× 1015 with the uniform mesh spacing 0.9µm

(Eq. (5.8)). Therefore, it has to reduce the lengths of the computational model. Figure 5.56

shows the simplification of the computational model to a cuboid of 3D ∗ 3D ∗ 50D. Further,

Figure 5.52: The boundary conditions for the two dimensional mercury jet simulation
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Figure 5.53: The velocity profile at the inlet of the two dimensional mercury jet simulation

Figure 5.54: Contour of volume fraction of mercury for the two dimensional mercury jet
simulation over (a)the whole computational domain (b) 0 < x < 0.2 for enlarged view

the ILES requires a big number of mesh grids for the three dimensional simulation. With the

limited computational resources, we have to use the time-averaged RANS method for the

simulation. Therefore, the turbulent model RKE is applied here instead of ILES. Although

the unsteady complicated structure on free interface may be time-averaged, it is still possible

to analyze the deformation of the jet under different inputs conditions.

The outlet conditions of pipe simulation is assumed at the inlet of the mercury jet sim-

ulation. In order to find out the effects of bend and weld on the mercury jet interface

deformation, the outlet conditions from a straight nozzle pipe without a weld, a 90◦/90◦

pipe without a weld, and a 90◦/90◦ pipe with a 30◦ off bend plane weld are used in the

section for mercury jet simulation. Therefore, we classify the three dimensional mercury jet

simulation into three cases: case 1 uses the outputs of a straight nozzle pipe without a weld,

case 2 uses those of a 90◦/90◦ pipe without a weld, and case 3 uses those of a 90◦/90◦ pipe

with a 30◦ off bend plane weld. In the later part of the paper, the names of case 1, case 2,
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Figure 5.55: Schematics of target delivery system by V. Graves

Figure 5.56: Simplification of the three dimensional mercury jet model:(a)dimensional model
(unit: inch) (b)non-dimensional model (normalized by jet inlet diameter, D) (c) simplified
model with reduced length, width, and height (normalized by jet inlet diameter, D)
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Figure 5.57: The boundary conditions for the three dimensional mercury jet simulation case
1. The dimension shown in the draft is normalized by jet inlet diameter, which is 0.01m.
No gravity in the model. Case1: The jet inlet conditions use outputs of straight nozzle pipe
without a weld

Figure 5.58: The axial velocity profile imposed at the inlet of the three dimensional mercury
jet simulation case 1 (a) x line plot (b) y line plot

and case 3 will be called for convenience.

Because of the symmetric outputs from a straight pipe without a weld, halved model can

be used in case 1 with a symmetry boundary condition. Figure 5.57 describes the boundary

conditions for the case 1 simulation. Velocity profile from the outlet of the straight pipe

without a weld (Fig. 5.58) is assumed at the jet inlet. The results of αHg and Uz are shown

in Figs. 5.59 and 5.60. The outputs at the 90◦/90◦ pipe without a weld are also symmetry.

Case 2 has the same boundary conditions as case 1 (Fig. 5.57) The velocity profile at the inlet

of case 2 jet is shown in Fig. 5.61. The case 2 jet simulation results are shown in Figs. 5.62

and 5.63. The outputs at the 90◦/90◦ pipe with a 30◦ weld is asymmetric, therefore a

complete model should be used for case 3, seen in Fig. 5.64. The velocity profile at the jet

inlet is in Fig. 5.65. And results are shown in Figs. 5.66 and 5.67.
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Figure 5.59: Results of volume fraction of mercury, αHg, for three dimensional mercury jet
simulation case 1

Figure 5.60: Results of axial velocity, Uz, for three dimensional mercury jet simulation case
1
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Figure 5.61: The axial velocity profile imposed at the inlet of the three dimensional mercury
jet simulation case 2 (a) x line plot (b) y line plot

Figure 5.62: Results of volume fraction of mercury, αHg, for three dimensional mercury jet
simulation case 2
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Figure 5.63: Results of axial velocity, Uz, for three dimensional mercury jet simulation case
2

Figure 5.64: The boundary conditions for the three dimensional mercury jet simulation case
3. The dimension shown in the draft is normalized by jet inlet diameter, which is 0.01m. No
gravity in the model. Case3: The jet inlet conditions use outputs of 90◦/90◦ pipe with a 30◦

weld
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Figure 5.65: The axial velocity profile imposed at the inlet of the three dimensional mercury
jet simulation case3 (a) x line plot (b) y line plot

Case 1 is basic case without any influences from bend and weld on jet flow, while case

3 is the most complicated case of the three with combined effects of bend and weld. It is

interesting to check what is the differences of the jet deformation under these two cases.

Figure 5.68 is the difference of αHg between case 1 and case 1 at different z locations. The

larger values in Fig. 5.68 indicates bigger difference in jet shape. The difference becomes

bigger at downstream of the jet. At z = 45cm, the bigger difference locates at the positive

x (line y = 0), the first quadrant, and the second quadrant. Note that the 30◦ weld centers

at the positive x and the first and second quadrants are the inner side of the bend. It seems

to indicate some effects or combined effects of the bend and weld on the jet deformation. In

order to get a quantitive analysis on the jet deformation, we calculated the ellipticity of the

deformed jet for a better idea of the deformation.

5.3.3 Least Squares Fitting of Ellipses

In this section, we will detail the least squares method used to fit an ellipse to given

points in the plane, as the draft shown in Fig. (5.69).

In analytic geometry, the ellipse is defined as a collection of points (x, y) satisfying the

following implicit equation [132]:

ã1x
2 + ã2xy + ã3y

2 + ã4x+ ã5y = ã6, (5.9)

139



Figure 5.66: Results of volume fraction of mercury, αHg, for three dimensional mercury jet
simulation case 3
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Figure 5.67: Results of axial velocity, Uz, for three dimensional mercury jet simulation case
3
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Figure 5.68: Difference of αHg between three dimensional mercury jet simulation case1 and
case3
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Figure 5.69: Draft of ellipse fitting: a is the major axis, b is the minor axis, and /theta is
the rotational angle

where ã6 6= 0 and ã2
2 − 4ã1ã3 < 0.

To simplify the following analysis, we normalize the above implicit form by dividing ã6

an both sides of the equality sign, which reduces to

a1x
2 + a2xy + a3y

2 + a4x+ a5y = 1. (5.10)

Several new notations needs to be introduced to ease our discussion. For two vectors s =

(s1, s2, . . . , sm)T and t = (t1, t2, . . . , tm)T, the tensor product between them are defined as

s⊗ t = (s1t1, s2t2, . . . , smtm)T . (5.11)

Assuming nmeasurements ((x1, y1), (x2, y2), ..., (xn, yn) are given, we define x = (x1, x2, . . . , xn)T

and y = (y1, y2, . . . , yn)T, then the following cost function needs to be minimized

C (β) = (Xβ − 1)T (Xβ − 1) , (5.12)

whereX = [x⊗ x, x⊗ y, y ⊗ y, x, y] is a n-by-5 matrix, β = (a1, a2, a3, a4, a5)T consists of the

parameters to be determined, and 1 is a n-dimensional column vector with all 1’s. Expand

the matrix multiplication, we get

C (β) = βTXTXβ − 21TXβ + n. (5.13)
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To minimize C (β) it is requested that

∂C (β)

∂β
= 2βTXTX − 21TX = 0, (5.14)

from which we get

β =
(
XTX

)−1
XT1. (5.15)

The next step is to extract geometric parameters of the best-fitting ellipse from the algebraic

equation (5.10). We first check the existence of a tilt, which is present only if the coefficient

B in (5.10) is non-zero. If that was the case, we first need to eliminate the tilt of the ellipse.

Denoting the tilt angle of the ellipse by θ, the following coordinate rotation transformation

is employed 
x = cos θx′ − sin θy′

y = sin θx′ + cos θy′
. (5.16)

Substitute the above expressions into Eq. (5.10), we get

(
a1c

2 + a2cs+ a3s
2
)
x′2 +

(
−2a1cs+ a2

(
c2 − s2

)
+ 2a3cs

)
x′y′ +(

a1s
2 − a2cs+ a3c

2
)
y′2 + (a4c+ a5s)x

′ + (−a4s+ a5c) y
′ + 1 = 0, (5.17)

where c = cos θ and s = sin θ. Let the term before x′y′ to be zero, the following equation for

θ is achieved

−2a1 cos θ sin θ + a2

(
cos θ2 − sin θ2

)
+ 2a3 cos θ sin θ = 0, (5.18)

from which we know θ = 1
2

arctan
(

a2
a1−a3

)
. Now the constants c and s are known, Eq. (5.17)

is reduced to

a′1x
′2 + a′3y

′2 + a′4x
′ + a′5y

′ = 1, (5.19)

where a′1, a′3, a′4 and a′5 are all known constants. The only remaining step for the ellipse
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fitting is to transform Eq. (5.19) into the following canonical form

(x′ − x′0)2

b2
+

(y′ − y′0)2

a2
= 1, (5.20)

in which (x′0, y
′
0) is the center of the ellipse in the rotated coordinate system, and a and b are

the lengths of the semi-axes. Applying a square completion method to Eq. (5.17), we get

(x′ + a′4/ (2a′1))2

(a′6/a
′
1)

+
(x′ + a′5/ (2a′3))2

(a′6/a
′
1)

= 1, (5.21)

where a′6 = 1 + (a′24 )/(4a′1) + (a′25 )/(4a′3). Compare Eqs. (5.20) and (5.21), it easy to notice

x′0 =
−a′4
2a′1

, y′0 =
−a′5
2a′3

, a =

√
a′6
a′1
, b =

√
a′6
a′3
. (5.22)

Substitute the above expressions of x′0 and y′0 into Eq. (5.16), we get the coordinate of the

ellipse center in the original coordinate system


x0 = − cos θ

a′4
2a′1

+ sin θ
a′5
2a′3

y0 = − sin θ
a′4
2a′1
− cos θ

a′5
2a′3

. (5.23)

The mercury jet was considered at z = 30 cm and z = 45 cm, which are the locations of

view port 1 and view port 2, respectively. 40 points were digitized in mercury jet simulations

at these z values, shown in Figs. (5.59),(5.62), and (5.66). The results of fitting ellipse to

these digitzed points are shown in Figs. (5.70), (5.71), and (5.72).

In the results of ellipse fitting, no big significant differences are found among different

cases. To quantify this, uncertainties in the fitting should be estimated. Here we apply an

error analysis formulated by Prof. McDonald [133]. It gives a prescription for fitting a set

of m points, {xj, yj}, (perhaps from digitization of an image) to an ellipse, with the general
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Figure 5.70: Least square fitting of ellipses for 3D mercury jet simulations using as input
the output from a straight pipe without a weld: (a) contour of volume fraction of mercury
at z = 30 cm, (b) ellipse fitting at z = 30 cm, (c) contour of volume fraction of mercury at
z = 45 cm, (b) ellipse fitting at z = 45 cm.
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Figure 5.71: Least square fitting of ellipses for 3D mercury jet simulations using as input
the output from a 90◦/90◦ pipe without a weld: (a) contour of volume fraction of mercury
at z = 30 cm, (b) ellipse fitting at z = 30 cm, (c) contour of volume fraction of mercury at
z = 45 cm, (b) ellipse fitting at z = 45 cm
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Figure 5.72: Least square fitting of ellipses for 3D mercury jet simulations using as input
the output from a 90◦/90◦ pipe with a 30◦ weld: (a) contour of volume fraction of mercury
at z = 30 cm, (b) ellipse fitting at z = 30 cm, (c) contour of volume fraction of mercury at
z = 45 cm, (b) ellipse fitting at z = 45 cm
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form (with 5 parameters ai),

a1x
2 + a2xy + a3y

2 + a4x+ a5y − 1 = 0. (5.24)

In addition, we give an estimate of the errors on the best-fit values of the parameters ai.

(1) Errors on the Parameters of the Quadratic Form (Eq. 5.24). We first define the

auxiliary data set {zij}, (i = 1, 5, j = 1,m),

zi,j = (x2
j , xjyj, y

2
j , xj, yj). (5.25)

Among many possible measures of the goodness of fit,1 we adopt the simplest, writing

χ2 =
m∑
j=1

(
∑5
i=1 aizij − 1)2

σ2
j

, (5.26)

where σj is the measurement uncertainty associated with the data point (xj, yj). The best-fit

parameters âi are those that minimize the function χ2 for a set of measurements {zij}.

We consider the case that the σj are not known, but assumed to have the common value σ.

Then, by supposing that the function χ2 is actually a chi-square [137, 138, 139, 140, 141, 142]

with m − 5 degrees of freedom, the best-fit (minimum) χ2 has most probable value m −

5. Assuming that the best-fit χ2 has this value, the unknown σ is determined, and error

estimates for the best-fit parameters i follow via standard procedures.2

A great insight is that exp(−χ2/2) can be thought of another way. It is also the (un-

normalized) probability distribution that the polynomial coefficients have values ai when

their best-fit values are âi with uncertainties due to the measurements {xj, yj}. Expressing

this in symbols,

exp(−χ2/2) = const× exp

(
−

5∑
k=1

5∑
l=1

(ak − âk)(al − âl)
2σ2

kl

)
, (5.27)

1For a survey of 13 measures, see [134],[135].
2For a discussion of this approach for polynomial fitting, see the lab manual of Prof. McDonald [143].
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or equivalently

χ2/2 = const +
5∑

k=1

5∑
l=1

(ak − âk)(al − âl)
2σ2

kl

. (5.28)

The uncertainty on âk is σkk in this notation. In Eqs. (5.27) and (5.28) we have introduced

the important concept that the uncertainties in the coefficients âk are correlated. That is,

the quantity σ2
kl is a measure of the probability that the values of âk and âl both have positive

fluctuations at the same time. In fact, σ2
kl can be negative indicating that when âk has a

positive fluctuation then âl has a correlated negative one.

One way to see the merit of minimizing the χ2 is as follows. According to Eq. (5.28) the

derivative of χ2 with respect to ak is

∂χ2

∂ak
=

5∑
l=1

al − âl
σ2
kl

, (5.29)

so that all first derivatives of χ2 vanish when all al = âl. That is, χ2 is a minimum when the

coefficients ai take on their best-fit values âi. A further benefit is obtained from the second

derivatives:
∂2χ2

∂ak∂al
=

1

σ2
kl

. (5.30)

For our particular χ2 (5.26), with σj = σ, the first derivatives are

∂χ2

∂ak
=

m∑
j=1

zkj(
∑5
i=1 aizij − 1)

σ2
=

1

σ2

5∑
i=1

m∑
j=1

aizijzkj −
1

σ2

m∑
j=1

zkj, (5.31)

and the second derivatives are

∂2χ2/2

∂ak∂al
=

1

σ2

m∑
j=1

zkjzlj ≡
Mkl

σ2
. (5.32)

Using the matrix Mkl introduced in Eq. (5.32), the condition that the first derivatives (5.31)
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vanish at the best-fit coefficients âk can be written as

5∑
i=5

Mikâi =
m∑
j=1

zkj ≡ Vk. (5.33)

We then calculate the inverse matrix M−1 and apply it to find the best-fit coefficients âk

(which do not depend on the as-yet-unknown value of σ),

k =
5∑
l=1

M−1
kl Vl. (5.34)

Comparing eqs. (5.30) and (5.32) we have

1

σ2
kl

=
Mkl

σ2
. (5.35)

The uncertainty in best-fit coefficient âi is then reported as

σ
i

= σii =
σ√
Mii

. (5.36)

All that remains is to find the value of the unknown uncertainty σ = σj on the measure-

ments. For this, we set the χ2 for the best-fit parameters i equal to the number of degrees

of freedom, m− 5,

χ2(âi) = m− 5 =
m∑
j=1

(
∑5
i=1 âizij − 1)2

σ2
, (5.37)

such that σ is determined to be

σ =

√√√√∑m
j=1(

∑5
i=1 âizij − 1)2

m− 5
, and σ

i
= σii =

√√√√∑m
j=1(

∑5
k=1 âkzkj − 1)2

(m− 5)
∑m
j=1 z

2
ij

. (5.38)

(2) Errors on the Conventional Ellipse Parameters An alternative description of the ellipse

of Eq. (5.24) is that it has semimajor axis of length a which makes angle θ to the x-axis,
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semiminor axis of length b, and center at (x0, y0). The shape parameters a, b and θ depend

only on a1, a2 and a3, while the center of the ellipse depends on all five of the ai. We now

deduce the alternative parameters, and their fit errors, in terms of the ai and the errors on

the latter as found in sec. 1.

We first translate the coordinates according to x′ = x− x0 and y′ = y− y0 such that the

resulting parameters a′i of the quadratic form have

a′1 = a1, a′2 = a2, a′3 = a3, a′4 = 2a1x0 + a2y0 + a4, a′5 = a2x0 + 2a3y0 + a5. (5.39)

For the ellipse to be centered at x′ = 0 = y′ we need a′4 = 0 = a′5, which leads to

x0 =
a2a5 − 2a3a4

4a1a3 − a2
2

, y0 =
a2a4 − 2a1a5

4a1a3 − a2
2

. (5.40)

As a check, we note that if a4 = 0 = a5 then the original ellipse was centered on the origin,

and indeed eq. (5.40) implies that x0 = 0 = y0.

To deduce the error on, say, x0 we first consider the differential,

dx0 =
a5da2 + a2da5 − 2a4da3 − 2a3da4 − x0(4a3da1 + 4aada3 − 2a2da2)

4a1a3 − a2
2

. (5.41)

Then, on squaring this we can identify (dx0)2 with the squared error σ2
x0

when we identify

the products dai daj with the σ2
ij found in Eq. (5.35).

The determine the shape parameters a, b and θ we perform a coordinate rotation by

angle θ with respect to the x′-axis3 (which is parallel to the x-axis),

x′′ = x′ cos θ + y′ sin θ, x′ = x′′ cos θ − y′′ sin θ, (5.42)

y′′ = −x′ sin θ + y′ cos θ, y′ = x′′ sin θ + y′′ cos θ, (5.43)
3We could also make the rotation directly from the (x, y) coordinates, with no affect on the shape

parameters, as these don’t depend on a4 and a5. However, if parameters x0 and y0 are deduced only after
this rotation, they appear to depend on θ, which complicates the expressions for their errors.
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and require that a′′2 = 0, in which case a′′1 = 1/a2 and a′′3 = 1/b2. This leads to

tan 2θ =
a2

a1 − a3

, cos 2θ =
a1 − a3√

a2
2 + (a1 − a3)2

, sin 2θ =
a2√

a2
2 + (a1 − a3)2

, (5.44)

σθ =
cos2 2θ

2a1 − a3

√
tan2 2θ(σ2

11 + σ2
33 − 2σ2

13) + σ2
22 − 2 tan 2θ(σ2

12 − σ2
23), (5.45)

and

1

a2
= a1 cos2 θ + a2 sin θ cos θ + a3 sin2 θ =

a1 + a3 + (a1 − a3) cos 2θ + a2 sin 2θ

2

=
a1 + a3 +

√
a2

2 + (a1 − a3)2

2
, (5.46)

1

b2
= a1 sin2 θ − a2 sin θ cos θ + a3 cos2 θ =

a1 + a3 − (a1 − a3) cos 2θ − a2 sin 2θ

2

=
a1 + a3 −

√
a2

2 + (a1 − a3)2

2
. (5.47)

Note that 1/b2 ≤ 1/a2, which means that b is the semimajor axis, and a is the semiminor

axis. Note also that tan 2θ = tan 2(θ − π/2), so there is an ambiguity in Eq. (5.44) as to

whether θ is the angle to the semimajor or the semiminor axis.

As a measure of the departure of the ellipse from a circle we introduce the ellipticity

(flattening) %,4

% ≡ b

a
≥ 1 , %2 =

a1 + a3 +
√
a2

2 + (a1 − a3)2

a1 + a3 −
√
a2

2 + (a1 − a3)2
≡ C+

C−
. (5.48)

Taking the differential, we have

2% dϑ =
dC+ − %2 dC−

C−
≡ C1 da1 + C2 da2 + C3 da3

C−
, (5.49)

4If we define %′ = (b− a)/a = %− 1, so that %′ = 0 for a circle, then σ%′ = σ%.
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where

C± = a1 + a3 ±
√
a2

2 + (a1 − a3)2 = a1 + a3 ± S, S ≡
√
a2

2 + (a1 − a3)2, (5.50)

C1 = 1− %2 +
a1 − a3

S
(1 + %2) = −2[a2

2 − 2a3(a1 − a3)]

SC−
≡ −2

D1

SC−
, (5.51)

C2 =
a2

S
(1 + %2) =

2a2(a1 + a3)

SC−
≡ 2

D2

SC−
, (5.52)

C3 = 1− %2 − a1 − a3

S
(1 + %2) = −2[a2

2 + 2a1(a1 − a3)]

SC−
≡ −2

D3

SC−
. (5.53)

Then, the error σ% on the ellipticity % is given by

σ% =
1

%SC2
−

√
D2

1σ
2
11 +D2

2σ
2
22 +D2

3σ
2
33 − 2D1D2σ2

12 − 2D2D3σ2
23 + 2D1D3σ2

13 . (5.54)

Of course, the “error” computed this way assumes that the fit is “good”, which might not

be the case. A separate judgment should be made as to whether the fit is indeed “good"

before taking seriously the error estimates presented here.

The calculations of theta and ellipticity, and their errors, for the six cases are shown in

Table 5.1. The ellipticity is not significantly different in any of these cases. However, in some

cases the estimated errors are extremely large, which may be a hint that the error-estimation

procedure is itself not very accurate.

Table 5.1: Ellipticity and fitting errors
θ % σθ σ%

Case 1 (z = 30cm) 0.00 1.04 6.52× 10−2 5.96× 10−3

Case 1 (z = 45cm) 0.00 1.03 1.52× 100 8.18× 10−2

Case 2 (z = 30cm) 0.00 1.04 4.24× 102 3.97× 101

Case 2 (z = 45cm) 0.00 1.06 1.91× 103 2.46× 102

Case 3 (z = 30cm) 0.46 1.03 4.09× 10−1 1.80× 10−2

Case 3 (z = 45cm) −0.23 1.03 3.85× 100 2.31× 10−1
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Chapter 6

Concluding Remarks

Since the turbulence of the mercury target flow has a significant influence on the particle

produce for the Muon Collider project, this work studies the flow dynamics of mercury flow

in target supply pipe and mercury jet flow, with the purpose of achieving the least turbulent

target flow.

The theoretical analysis of laminar flow in curved pipes shows the curvature terms rep-

resenting the rotation flow modes in curved pipes which is different from that in a straight

pipe. Realizable k− ε model is validated as a better turbulence model for simulation of flow

in curved pipes than other simpler one- or two-equation RANS approaches, which is applied

in this paper. The results of turbulent mercury flow in curved pipes, which take reference

from MERIT experiment and consider different half-bend angles and the existence of nozzle

at pipe outlet, illustrate that the straight pipe (zero half-bend angle) with a nozzle is the

least turbulent flow design. More over, mercury flow in a nozzle with weld beads is studied.

Weld causes fluid flows backward and increases the turbulence intensity of the flow. It is

found that the turbulence level at the exit of the pipe with a weld is much stronger than that

of a pipe without a weld. For a bend pipe without a weld, the turbulence intensity at the

exit decreases after the flow passes through the nozzle. These indicates that nozzle plays an

opposite role from weld on turbulence intensity: nozzle suppress the turbulence while weld
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promotes it. Further, the static pressure is found to have almost the same change from inlet

to outlet of the pipe with/without a bend/weld.

When starting this problem, FLUENT didn’t have the CLSVOF function. A CLSVOF

method is developed in this paper by implementing LS method in the FLUENT. The LS

method is coupled with the built-in VOF method through UDFs. High order WENO scheme

is applied to solve the re-initialization equation in the LS method. The developed CLSVOF

method is verified and validated through some successful tests. Due to the limited time after

the successful accomplishment of the developed CLSVOF method, the built-in CLSVOF

method in FLUENT is used to simulate the two-phase jet flows. The validation of the

FLUENT CLSVOF method is verified through laminar and turbulent jet simulations. For

mercury jet simulation, the out flow conditions of the pipe flow are considered as the inlet

conditions of the jet flow. Rich jet breakups are observed in the two dimensional mercury

jet simulation using the ILES method. Since it requires a big number of grid mesh points

for the three dimensional mercury jet simulation using ILES, the RKE turbulent model is

applied instead. Although RKE averages the unsteady structure on the jet interface, it is

still useful in analyzing the deformation of the jet. Jet coming out of a 90◦/90◦ pipe with a

30◦ off bend plane weld has bigger deformation on the weld and inner bend sides, compared

to the jet exhausting from a straight nozzle pipe without a weld. Least square ellipse fitting

is used to quantitatively analyze the jet deformation. The magnitude of ellipticity is very

close to each jet simulation, which uses three outputs of pipe simulations as jet inputs. From

the error of fitting, we can clear see the jet simulation based on the outputs of a 90◦/90◦ pipe

with a 30◦ weld has the largest error. It indicates the biggest influences on jet flow from a

bend pipe with a weld.

The developed CLSVOF method has just been worked through. Preliminary successful

tests proves its ability in capturing sharp filament. In future, more tests are needed for

the developed CLSVOF method, e.g. Rayleigh-Taylor instability. Also, the coordinate

transform is considered in the method, which is appropriate for complex geometries. A
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general curvilinear implementation of the developed CLSVOF method needs to be tested.

Further, the current code is in serial implementation. A parallel implementation should be

done.

For the three dimensional mercury jet simulation, one more case is suggested to be

completed, whose inlet conditions use the the outputs from the 90◦/90◦ pipe with a 30◦ with

30◦ weld on the bend plane (note: case3 uses the outputs from the 90◦/90◦ pipe with a 30◦

weld off the bend plane). Further, the error of fitting analysis needs to be improved.
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