2D Jet Simulation Updates

Jan.23rd 2014 Yan Zhan SUNY Stony Brook

Problem 1: Water-Air Jet

An axis-symmetric water jet into still air with a mean bulk velocity of 4.5455 m/s (D = 0.01m, and Re = 50,000).

Boundary Conditions

Jet Characteristics

• Physical Characteristics

Diameter (D)	Velocity	Turbulent Intensity	
0.0102108 m	4.5455 m/s	u'/U = 0.05	
Phase	Density	Viscosity	Surface Tension
Air	1.225 kg/m ³	1.46×10 ⁻⁵ m ² /s	0.071 N/m

- Numerical Characteristics
 - Determination of the mesh size:

Assume only primary breakup, the critical liquid Weber number is 10, then Δx _critical = 34.4 μ m

$$We \equiv \frac{\rho u^2 \Delta x}{\sigma} \to \Delta x = \frac{10*0.071}{998*4.5455*4.5455} = 3.44 * 10^{-5} \text{ m}$$

Mesh

Halved (axis-symmetric) model with grid# of 822,000

Results (t = 0.0307s)

Problem 2: Menard's Test^[1]

[1] T. Menard, etc., Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet, International Journal of Multiphase Flow 33 (2007) 510–524 7

Menard's Results^[1]

Jet development and penetration (dt = $2.5 \mu m$)

Boundary Condition

Jet Characteristics

• Physical Characteristics

Diameter (D)	Velocity	Turbulent Intensity	
100 µm	100 m/s	u'/U = 0.05	
Dhaaa			
Phase	Density	Viscosity	Surface Tension
Gas	Density 25 kg/m ³	4x10 ⁻⁷ m ² /s	Surface Tension0.06 N/m

- Numerical Characteristics
 - Determination of the mesh size:

Assume only primary breakup, the critical liquid Weber number is 10, then $\Delta x_critical$ = 2.36 μm

$$We \equiv \frac{\rho u^2 \Delta x}{\sigma} \to \Delta x = \frac{10*0.06}{696*100*100} = 2.36 * 10^{-6} \text{ m}$$

Mesh

Halved (axis-symmetric) model with grid# of **1,146,880**

• Set Up 1 (t = **0** s):

• Set Up 1 (t = **10** μs):

• Set Up 1 (t = **30** μs):

• Set Up 2 (iteration = 0):

• Set Up 2 (iteration = **1500**): :

• Set Up 2 (iteration = **3500**) :

• Set Up 2 (iteration = **4500**) :

Next: Turn to Unsteady Simulation

More Information

Considered Range: Weber numbers ($We_{fd} = \rho du_0^2 / \sigma$) : 1.0X 10²- 1.1X1 0⁶; Reynolds numbers ($Re_{fd} = \rho_f du_0^2 / \mu_f$) : 3.4X10³-8.5X 10⁵ ; Ohnesorge numbers ($OH_d = \mu_f / \rho_f d\sigma$) : 0.001-0.017.

[2] P-K Wu and G M Faeth, Onset and end of drop formation along the surface of turbulent liquid jets in still gases, Phys. Fluids, Vol. 7, No. 11, November 1995

Surface breakup regime map for turbulent liquid jets in still gases when aerodynamic effects are small (liquid/gas density ratios are larger than 500)^[2]

More Information

Problem #	We _{fd}	Re _{fd}	OH _d	$x_i = 2000 W e_{fd}^{-0.67} d$	$x_e = 1.58 \times 10^{-5} W e_{fd} {}^{1.68} d$
Problem 1	2,904	50,000	0.001	9.568d	10.387d
Problem 2	11,600	5,800	0.01857	3.783d	106.4d

 x_i : location of onset of turbulent breakup; x_e : location of end of turbulent breakup.