Funneling π 's and μ 's

Bruno Autin, Peter Sievers, André Verdier CERN François Méot CEA, Saclay

9/9/2004

Proton Beam Parameters

Number of bunches	140		
Protons per bunch	1.6×10 ¹²		
Bunch spacing [ns]	22.7		
Bunch length (4 σ) [ns]	6		
ε _{tn} [μm]	50		
Pulse length [µs]	3.3		
Repetition frequency [Hz]	50		
Beam power [MW]	4		

Why a funneling system?

No exotic and expensive technology.
Lifetime in excess of one year.
Evolutionary design.

How it works?

- The proton beam is switched to 4 targets in sequence.
- Each of the 4 pion lines contains an integrated system of target, magnetic horn and cooling.
- The funnel is made of large aperture magnets with quadrupolar and pulsed dipolar coils.

Funneling step by step

Magnetic horn

NuFact03, June 04 -11, New York Funneling pions and muons.

9/9/2004

Horn Parameters

Radius of the waist [mm]	40		
Voltage on the horn [kV]	4.2		
Skin depth [mm]	1.25		
Pulse length [µs]	93		
Peak current [kA]	300		
Repetition frequency [Hz]	50 → 12.5		
rms current in the horn [kA]	14.5 → <mark>3.6</mark>		
Power dissipation by current [kW]	39 → <mark>9.7</mark>		

Target in Horn

NuFact03, June 04 -11, New York Funneling pions and muons.

9/9/2004

Target dynamics 1

Condition for shock

Energy deposited in a time short wrt sound propagation time. Typical scales: Distance ~ 1 cm, v_s ~ 3000 m/s, t_s ~ 3 µs. Synchrotron: bunch length ~ 5 ns Accumulator: pulse length ~ 1 km ~ 3 µs. • Escape from shock Fragment the target: Distance ~ 1 mm, t_s ~ 0.3 µs. Good for accumulator. Insufficient for synchrotron.

9/9/2004

Target dynamics 2

Condition for rupture (P. Drumm et al., vFact00) Stress induced by shock exceeds elastic limit of target material. Typical scales: $\Delta \sigma \sim E \alpha \Delta T \sim 3500 \text{ MPa}$ at 10 Hz in Ta Elastic limit ~ 400 MPa at room temperature. **Escape from rupture** No shock, no stress. **Reduce** ΔT by increasing repetition frequency and beam size.

Effect of funneling on target parameters

Pion Beam Parameters

Number of bunches	140		
Pions per bunch	< 1.4×10 ¹⁰		
Bunch spacing [ns]	22.7		
Bunch length (4σ) [ns]	14		
Transverse admittance [π cm]	1 (no cooling)		
	4 (cooling)		
Longitudinal emittance [eV s]	0.5		
Momentum spread [MeV/c]	200 - 500		

Polarities

Scheme 1: AC quadrupoles Good transmission. Complicated power supplies due to high stored magnetic energy. Scheme 2: DC quadrupoles Reduced transmission (2/3). Conventional power supplies.

9/9/2004

Optical functions

Center of mass trajectory

β-functions

NuFact03, June 04 -11, New York Funneling pions and muons.

9/9/2004

Magnet Parameters

Section	Magnet	Current	Length	Radius	B [T]	B [T]
		distributions	[m]	[m]	Scheme 1	Scheme 2
					(ϵ = 4 π cm)	(ϵ = 4 π cm)
Funnel	D1+Q1	cosθ, sinθ cos2θ	1	0.6	1	0.65
	Q2	cos20	1	0.6	1.2	1
	D2+Q3	cosθ, sinθ cos2θ	1	0.6	1.5	1.25
	Q4	cos20	1	0.6	1.3	1.4
	D3	$\cos\theta$, $\sin\theta$	0.4	0.6	0.4	0.8
Decay channel	Q5, Q6, F, D	cos2θ	0.4	0.4	3.4	2.9

9/9/2004

NuFact03, June 04 -11, New York Funneling pions and muons.

15

Muon production

- $Y = N_{\mu}/N_{\pi}$ versus longitudinal emittance for :
 - two transverse admittances $\varepsilon_t = 1\pi$ cm (no cooling), 4π cm (cooling)
 - three regimes: solenoid, conventional and high field quadrupoles.

9/9/2004

Conclusions

- Muon production for neutrino factories is on the way of being solved within the context of low energy, high repetition frequency proton driver.
- Target and horn developments have started but not at the wanted pace.
- Pending topics: magnet design, proton dump.