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1. Reminder of the Solid Target Design and Studies.
2. Target lifetime.

3. Measuring thermal shock with the VISAR*.

4. Measuring thermal shock with a Vibrometer.

*Velocity Interferometer System for Any Reflector



Solid Target Studies

1. The original idea was to have a tantalum toroid rotate
through the beam and threading the  pion
collection/focussing solenoid. The toroid operated at
~1600 K and radiated the heat to the surrounding water
cooled walls.

2. The main problem was considered to be thermal shock
generated by the ~2 ns long proton pulses (10 GeV, 50 Hz,
4 MW beam, dissipating ~700 kW in the target).



Thermal Shock Studies: Lifetime Test.

A high current pulse was passed through a 0.5 mm diameter
tantalum wire, simulating the stress expected in a full size
target. The number of pulses was counted before failure of
the wire. Tantalum quickly proved to be too weak and was
replaced by tungsten . Great care was needed to align the
wire in the support structure to minimise the very large
Lorenz magnetic forces. Most failures were probably due to
this and to the wire sticking in the sliding free-end support
/electrical connection.

It soon became evident in the wire shock tests that thermal
shock was not the problem. The wire was not failing from a
single or a few shock pulses, but could survive tens of
millions of pulses. The problem is not thermal shock but
fatigue and creep. Fatigue and creep are not amenable to
analysis. It is not possible to predict the number of cycles
to failure with any accuracy.
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We are proposing circulating a series of 200 - 500 tungsten
bars through the beam at a rate of 50 bars per second to
coincide with the beam pulses. This should give a lifetime of
tens of years for each bar. The bars will be 1-2 cm in diameter

and ~20 cm long.



Conclusions

I believe that the viability of solid tungsten
targets at high-temperature for a long life (~10
years) has been demonstrated with respect to
thermal shock and fatigue and will not suffer
undue radiation damage.



Thermal Shock Studies

Measure Surface Motion and deduce the constitutive
equations of state at high temperature under shock
conditions.

Currently a VISAR is being used fo measure the surface
accelerations/velocities/displacements. We are measuring
the longitudinal vibrations of the "free" end of the wire.

Results are very preliminary. The instability of the laser in the
VISAR makes reproducible, accurate measurement
difficult. Currently we are starting to using Fourier
analysis to find the f quency spectrum. Young's modulus
of elasticity is given by, x

where fis the frequency of the longitudinal oscillation.

From this it should be possible to measure £ as a function of
stress and temperature and predict failure under shock
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The VISAR tests
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VISAR tests have been performed with
0.3 mm diameter tungsten wire

Wire Laser

I < beam

Idea was to measure the VISAR signal and to
extract the longitudinal oscillations of the
pulsed wire

Two characteristic results (shots 3 and 5)
shown on the left*

- Current pulse

, Purple - VISAR signal (2 channels)

VISAR signal obtained for the very first time
- nice agreement with simulations results -

But, noise is an issue herelll

Analysis shown on the following slides will try
to address this problem

* Note the different time scale



The Frequency analysis
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the wire motion properly (noise ~ signal)
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Really powerful method, we need more data from VISAR
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A few examples how we can filter the data

Frequency analysis of the VISAR signal
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Frequency analysis of the VISAR signal and LS-DYNA results
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VISAR tests with a shorter wire (3 cm)

New tests have been performed with a
shorter wire

Wire Laser
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«— A few characteristic results

v

VISAR signal

W W‘ww%.m e o b I;ﬁ,iq LY, \q/\%"“ Wﬁﬁu

Current Eulse t“'-“

Ch1 200V M10.0ps A EXt J S00mV

12 Mar 2009
m47.00 % 12:33:38

First conclusion: no signal here!

But, interesting 'coincidence’ in frequency
spectrum...
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The Frequency analysis of the VISAR signal

Tests with a shorter wire
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slide)
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Small statistics - so we can say it's a coincidence (but will be interesting to collect more data)
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VIBROMETER

We have had a trial demonstration of a Vibrometer - a type of
Michelson interferometer. This enables us to see the radial
vibrations of the wire as well as the longitudinal under thermal

shock.

Here is a very preliminary result.
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Vibrometer & FFT
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Vibrometer tests
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The Frequency analysis of the Vibrometer signal
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Better experimental data at medium time scale needed in order to compare longitudinal
oscillations with corresponding calculations results (VISAR results, we have so far, are much
better for this - see FFT & VISAR presentation for initial comparisons)



Conclusion
At long last I believe we are beginning to see our way to
making an assessment of the strength of the tungsten under
stress conditions at high temperatures.



