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1. Fatigue Life of Tungsten at High Temperatures and

High Strain Rates.

2. Fatigue Life of Tungsten at High Temperatures and Low
Strain Rates (quasi-static).

3. Emissivity of Tungsten and Surface Roughness

4. Oxidation of Tungsten at High Temperatures
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Schematic diagram of “"The Little Wire”
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"The Little Wire” Equipment




LDV = Laser Doppler Vibrometer
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Operating Principle

d Magnitude and frequency of wire oscillations measured using LDV
— Characteristic frequency gives a direct measure of the material Elastic Modulus

— Induced dynamic stress is calculated via LS-DYNA simulation and verified by cross-
comparison with measured surface velocities
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Why High Strain-Rate Measurements?

The main issue for beam-facing materials used in target systems (targets, beam
windows, beam dumps, containment vessels, etc.) is the magnitude and the rate
of change of deposited energy density (J/cc).

In a regime where beam pulse length is short compared to characteristic
expansion times and thermal conduction timescales we can make the following
simplifications:

AT=E,, . /p.Cp Thermal Stress = a.E.AT

With increasing beam power, and decreasing pulse length, the estimate of
material strength and corresponding lifetime based on simple, quasi-static
equations is no longer accurate.

In these cases the materials respond dynamically and they behave differently than
under quasi-static loading. In order to address this problem the fundamental
material properties and corresponding strength have to be measured under
dynamic conditions.



Dynamic Young's Modulus of Tungsten
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Fig. 8. Young's modulus of a 0.5 mm diameter tungsten wire as a function of Fig.10. Comparison between our experimental results and previous results [11]on
temperature for four different peak currents. tungsten Young's modulus.
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Yield Strength Measurements
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Figure 2. The yield strength versus peak temperature for tantalum wires of
0.5 and 0.8 mm diameter and for tungsten wires of 0.5

mm diameter [5].

J.R.J. Bennett et al., Nucl. Instr. And Meth. A (2011), doi:10.1016/j.nima.2011.03.036



Lifetime Evaluation (Cycles to failure)
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Why Low Strain-Rate Measurements?

O In some target applications the rate of change of stress and Strain are ‘low’.
i.e. we have a ‘quasi-static’ state of stress:

e.g. Proposed MuZ2e Target:
Unusually long (~50 msec) beam spills give rise
to quasi-static cycles

e.g. ISIS target Cladding:
Stresses rise and fall between pulses on the
timescale of thermal conduction
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Low Strain Rate Tests in the Little-Wire Test Rig

Operating Principle:

O Use resistive (Joule) heating from
an electric current pulse to
preferentially heat the centre of a
disk

O Pulse length long enough to give

‘static’ stress field
(do not want inertial stresses)

O Inter pulse gap long enough for
transient stress component to

decay
(on the timescale of thermal conduction)

d Rep rate of 10’s of Hz

(to allow accelerated testing of target
lifetime cycles)
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D.C. Current Distribution

160A D.C - equivalent heating to

d Example: Mu2e Target Test
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Tuneable Temperature and Stress Cycles

O Can tune the sample geometry to achieve representative temperature and stress
cycles for a given application

O Can fine tune the stress cycle and operating temperature online by varying the
peak current and rep rate.
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Example: Temperature and stress cycles in the proposed MuZ2e test specimen
(1.6 kA, 1 msec half sine-wave current pulses @ 25Hz)
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First Tests Using Tantalum Foil
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Thermal Emissivity and Surface Roughness

[ The surface roughness alters the emissivity. Measure the emissivity and
roughen the surface - with abrasives — cut groves in the surface — etc.

Tungsten tube with a small

hole drilled in one side.

(rolled sheet or machine Look with optical pyrometer,

from solid) \ + Compare outer surface to tube interior (~black body)
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Place thermocouple inside for cross-check (optional)

(d Use an Optical Pyrometer to:

— Measure black body temperature by looking through the hole—T,,
— Measure surface temperature — T,

e=T/Ty,



Oxidation

d Tungsten must be in an inert atmosphere or vacuum to avoid chemical
oxidation when hot.

d We need to know the maximum vacuum pressure at which the hot
tungsten will have a long life.

d There are measurements in the literature, - but if they are insufficient we
will make our own in the measurements in the “little wire test
equipment”.

Q Pressure
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To high oxygen, air
VEIBDUm < N or water
pump ‘
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Schematic diagram of the system



Summary of the “Little Wire Test” Equipment

The equipment is ideally suited to measuring the ultimate strength
of materials at very high temperatures at all strain rates.

It has been used to determine the properties of tungsten at high

strain-rate :

1 Lifetime (cycles to failure) as a function of stress and
temperature.

1 Strength as a function of temperature.

d  Young’s modulus of elasticity as a function of temperature.

It is easily adaptable to a variety of other measurements:
1 Lifetime evaluation at low strain-rate

d Emissivity measurements

( Oxidation Lifetime studies



