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In the MERIT experiment, the mercury jet, and any droplets ejected from it by the
proton beam interaction, were viewed via shadow photography from a distance D = 9.15 cm
from the center of the jet.

The jet may have had an elliptical cross section, so we describe the surface of the jet by
the expression

x2

a2
+

y2

b2
= 1. (1)

Of course, if the jet were circular with radius a, then b = a.
Can we get any indication of whether the jet were circular or elliptical using only our shadow

photography measurements?
These measurements describe the projection ym(t) onto the y (vertical) axis of a ray from

the observer that passes through a droplet at position (xd(t), yd(t)),
An interesting question is whether the droplets leave the surface of the jet in a direc-

tion perpendicular to the surface, or at some other angle. Here, I assume that they leave
perpendicularly, as shown above.

Suppose a droplet leaves the surface with velocity v0 at time t0 from point (x0, y0). Then,
at time t > t0, it has traveled distance

d = v0(t − t0), (2)

assuming that the velocity stays constant. The position of the drop is

xd = x0 + d sin θ, yd = y0 + d cos θ. (3)

The surface of the elliptical jet is

x2

a2
+

y2

b2
= 1, or x =

a

b

√
b2 − y2, or y =

b

a

√
a2 − x2. (4)
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The tangent to the surface of the jet at the point (x0, y0) obeys

slope =
dx

dy
= −a

b

y0

x0
. (5)

The droplet moves perpendicular to the slope, so

tan θ =
−1

slope
= −dy

dx
=

b

a

x0

y0
, sin θ =

tan θ√
1 + tan2 θ

=
x0

a
, cos θ =

1√
1 + tan2 θ

=
y0

b
.

(6)
Using these in eq. (3), we have

xd = (a + d) sin θ, yd = (b + d) cos θ, (7)

When the drop is viewed via shadow photography from a point at distance D from the
center of the jet, the position of the drop, ym, as projected onto the y axis is

ym = yd
D

D − xd

+ c ≈ yd

(
1 +

xd

D

)
+ c

= [b cos θ + c] + v0(t − t0) cos θ +
[a + v0(t− t0)][b + v0(t− t0)]

2D
sin 2θ, (8)

where c is the y-coordinate of the center of the jet.
The apparent velocity of the droplet along the y axis is

vm =
dym

dt
≈ v0

[
cos θ +

a + b + 2v0(t − t0)

2D
sin 2θ

]
. (9)

If the droplet is moving towards the observer, 0 < θ < 180◦, then the apparent velocity vm

increasing slightly with time (if air resistance can be ignored). Do we have any evidence in
our data for this small effect?

The earliest time t0m that a droplet can be seen via shadow photography is when ym ≈ b,1

so that

t0m ≈ t0 +
b(1 − cos θ)

v0 cos θ
≈ t0 +

b(1 − vm/v0)

vm
, (10)

and
vm ≈ v0

1 + v0(t0m − t0)/b
. (11)

In the first approximation, vm depends on t0m only through the height b of the jet.
An example of the relation between vm and t0m is shown in the figure on the next page.

1In case of a circular jet, the minimum measureable ym is b/
√

1− b2/D2 ≈ b(1+ b2/2D2). We ignore the
second-order correction.
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We now face a statistical question: Are the droplets distributed uniformly in angle θ, or
perhaps uniformly in angle φ, or perhaps they are equally probable to be emitted from any
point on the surface?

1. Uniform in θ.

P (θ) dθ =
dθ

2π
. (12)

2. Uniform in φ.

tan φ =
x

y
, sinφ =

x√
x2 + y2

, cos φ =
y√

x2 + y2
, (13)

and from eq. (6),
x = a sin θ, y = b cos θ. (14)

After some algebra,

dφ =
ab

a2 sin2 θ + b2 cos2 θ
dθ. (15)

Hence,

P (θ) dθ = P (φ) dφ =
dφ

2π
=

ab

a2 sin2 θ + b2 cos2 θ

dθ

2π
. (16)

3. Uniform in position s around the circumference C of the ellipse.

ds =
√

dx2 + dy2 =
√

a2 cos2 θ + b2 sin2 θ dθ. (17)

Hence,

P (θ) dθ = P (s) ds =
ds

C
≈ 2

√
a2 cos2 θ + b2 sin2 θ

3(a + b) −
√

(3a + b)(a + 3b)

dθ

2π
, (18)

using Ramanujan’s (very good!) approximation for the circumference of an ellipse.
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