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Comments on Emittance Calculations

K.T. McDonald
Princeton U.
(April 8, 2011)

“Accelerator physics—a field where often work of the highest quality is buried in lost 
technical notes or even not published.”

—Etienne Forest, J. Phys. A: Math. Gen. 39, 5321 (2006)
http://kirkmcd.princeton.edu/examples/accel/forest_jpa_39_5321_06.pdf
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Overview
A major challenge of a muon collider is “cooling” of the muon beam = reduction of its volume in 6-d 

phase space.

If/when we succeed in devising a sound concept for this, we will surely know it.

Along the way, we need to evaluate our conceptual progress, for which estimates of 6-d phase volume 
are helpful.

This leads to several general questions:

• What is phase space? What coordinates can/should we use to describe it?
• How should we account for effects of electromagnetic fields on the beam?
• Under what kinds of beam manipulations is phase volume invariant?
• How can we estimate phase volume numerically?
• Can we describe the evolution of phase volume from the initial pion beam to the decay muon beam?
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Hamiltonian Phase Space
The best succinct reference is Chap. 8 of Mechanics by Landau and Lifshitz.

The concept of phase space arises in the context of Hamiltonian dynamics, where a particle in 3-space 
is described by 3 “spatial” coordinates, q1, q2, q3 and their conjugate momenta p1, p2, p3 and an 
independent variable I will first call t.  The equations of motion are

where Lt(q1,p1,q2,p2,q3,p3) is the Lagrangian and Ht(q1,p1,q2,p2,q3,p3) is the Hamiltonian of the              
system.

Phase space is the space of the (canonical) coordinates, (q1,p1,q2,p2,q3,p3).

For a particle of mass m and charge e in an electromagnetic field that can be deduced from a scalar 
potential V and a vector potential A (in some gauge) , the Lagrangian is
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Use of z as the Independent Variable
Along the beamline, we measure particles at fixed position, say z, rather than at a fixed time t.  So it 

would be preferable to have a formalism in which z, rather than t, is the independent variable.   
This was considered by Courant and Snyder, Ann. Phys. (NY)  3, 1 (1958), Appendix B.

http://kirkmcd.princeton.edu/examples/accel/courant_ap_3_1_58.pdf

It turns out that if we take the momentum conjugate to coordinate t as pt = -Ht = -E = -Emech – eV, 
then the system is described by the Hamiltonian Hz,

For what it’s worth, the equation of motion for pt can be rewritten as

The transformation from coordinates (x,px,y,py,,z,pz) to (x,px,y,py,,t,pt) is a canonical transformation 
(i.e., from one set of canonical coordinates to another, such that a Hamiltonian exists for both 
sets of coordinates).

Of course, evolution in time under Hamiltonian Ht, or evolution in z under Hamiltonians Hz, is also a 
canonical transformation. 

http://kirkmcd.princeton.edu/examples/hamiltonian.pdf
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Liouville’s Theorem
A famous theorem, attributed to Liouville, is that Hamiltonian phase volume is invariant under 

canonical transformations.  Liouville actually knew nothing about Hamiltonians or phase space.  See 
D. Nolte, The Tangled Tale of Phase Space, Physics Today, 63, no. 4, 32 (2010),

http://kirkmcd.princeton.edu/examples/mechanics/nolte_pt_63_4_32_10.pdf

A consequence of Liouville’s theorem is that phase volume is invariant under evolution in time of a 
Hamiltonian system.

Similarly, phase volume is invariant under evolution in z of a Hamiltonian system, if z is used as the 
independent variable.

Since the transformation from t to z as the independent variable is a canonical transformation, phase 
volume is the same in either coordinates (x,px,y,py,,z,pz) or (x,px,y,py,,t,pt).

Also, a gauge transformation is a canonical transformation, so phase volume is gauge invariant.

A corollary of Liouville’s theorem is that the sums of subvolumes,  dq1dp1 + dq2dp2 + dq3dp3 and            
dq1 dp1 dq2 dp2 + dq3 dp3 , are also invariant under canonical transformations.

For a beam of n particles, Liouville’s theorem applies to the 6n-dimensional phase space if particle 
interactions are considered (and a Hamiltonian for the entire system exists), while if the particles are 
considered to be noninteracting, it applies to the set of n particles in 6-d phase space.
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Swann’s Theorem
A lesser known theorem is due to W.F.G. Swann, Phys. Rev. 44, 224 (1933), in what is probably the 

first paper ever to apply Liouville’s theorem to a “beam” of charged particles,
http://kirkmcd.princeton.edu/examples/accel/swann_pr_44_224_33.pdf

Swann’s theorem states the phase volume is the same when p = pmech + eA/c whether one uses the 
canonical coordinates (x,px,y,py,,z,pz) or the more intuitive coordinates (x,pmech,x,y,pmech,y,,z,pmech,z).

Similarly, phase volume is the same whether one uses the canonical coordinates (x,px,y,py,,t,-E) or the  
coordinates (x,pmech,x,y,pmech,y,,t,-Emech). 

Thus, we have the freedom to describe our beam in 4 different coordinate systems, and to use any 
gauge whatsoever, and the phase volume of the beam will be the same (if the beam can be 
described by a Hamiltonian and the particles are noninteracting).

In practice it is not easy to calculate the phase volume associated with a bunch of particles.   We use 
some numerical approximation.   Clearly, we desire to use that coordinate system, and that gauge, 
for which our numerical approximation to phase volume is the best.

There seems to be no theorem that explains what is the best strategy to deal with this issue.
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RMS “Invariant” Emittance
Our estimate of the phase volume of the bunch is the rms “invariant” emittance,

If motion in different indices i is decoupled, we consider the subemittances,

These “invariant” emittances are actually invariant only under “linear” (canonical) transformations.

Unfortunately, propagation of a beam across a field-free drift region is “nonlinear” (even though the 
particles move along straight lines).

For a beam with <pz> = p0 and initial rms quantities , p, z, pz, the emittances vary with time as
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Emittance Growth for Pions in a Drift Region

The emittances grow quadratically with t or z, and the emittances with z as the 
independent variable grow more rapidly than those with t as the independent 
variable.   

The integrations in t and z were analytic in this and the next slide.
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Stabilization of Transverse Emittance by an Axial Magnetic Field

At 10 T, the transverse emittance for this example is completely stabilized by an axial magnetic field.  
It makes no difference whether canonical momentum p or mechanical momentum pmech is used in 
the calculation of , although x = y are large when using p (but do not grow with t or z).

Is this effect documented in the literature?
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The stabilization occurs for                         (J.S. Berg, 2013).

An argument for this result is that if the diameter 2c p/eBz of the helical trajectory of a 
charge e with transverse momentum p  p in a uniform axial magnetic field Bz is less than 
the rms radial extent  of the bunch, the bunch does not appear to grow radially as it 
propagates, and the rms measure of transverse emittance remains invariant with 
time/distance.
See also, http://kirkmcd.princeton.edu/mumu/target/Sayed/140129/SolTaper-140129_k9.pdf

Stabilization of Transverse Emittance by an Axial Magnetic Field, Cont’d.
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Eigenemittances aka Courant-Snyder Invariant Eigenvalues
A. Dragt argues that we learn more if we calculate the so-called  invariant eigenemittances.

These are the absolute values of the 3 distinct eigenvalues, 1, 2, 3, of the matrix

Any function of the 1, 2, 3  is also invariant under “linear” transformations,

Examples:
If the x-y and z motions are decoupled, the method of eigenemittances reveals that

are invariant under “linear” transformations.  (|1| and |2| are listed on slide 9.)
Even if x, y and z are coupled, there is no “emittance exchange” between  and z under “linear” 

transformations, if the emittances are defined in terms of eigenemittances.

Perhaps we should check for “cooling” of the 1, 2, 3 as well as of the emittances.

2

2

2

2

2

2

x x x x y x x z

x y z

y x y y y y y z

xyz

x y z

z x z z y z z z

x y z

x p p y p p p z p p p

x x p x y x p x z x p

x p p p y p p z p p p
J

x y y p y y p y z y p

x p p p y p p p z p p

x z z p y z z p z z p

           

                

           
 
               

          

                

.








 
 
 
 
 



 6
1 2 3 1 2 3

6

det
, , and .xyz

m m m m
     




 

   4
1 2 3det det

, and .xy z
zm m m m

  
 

 
   



K.T. McDonald MAP Friday Meeting    April 8, 2011      12

A Beam of Pions and Muons
Before we have a muon beam we have a pion beam.

Presumably, the pion beam has a phase volume/emittance which has some relation to the phase 
volume/emittance of the muon beam it decays into.

To date, we largely ignore the phase volume/emittance of the pion beam, although this can be 
manipulated in the target/decay region.   Indeed, the magnetic taper from 20 down to 1.5 T 
provides a coupling of longitudinal and transverse phase space.

The decay of pions to muons is not describable by a Hamiltonian, and phase volume is altered during 
the decay.   

Somewhat unintuitively, the decay “heats” rather than “cools” the phase volume although energy is 
lost during the decay.

For example, the decay of the pion bunch considered on slides 8 and 9 roughly triples the transverse 
and longitudinal emittances, both in zero field and in 10-T field.   However, the initial emittance of 
this bunch is smaller than that we will consider for a muon collider.

It is an open question whether there could be favorable coupling between a tapering magnetic field in 
the decay region and the unwanted emittance growth during    decay.

B. Autin made some comments on emittance growth during    decay in
http://kirkmcd.princeton.edu/examples/accel/autin_nim_a503_363_03.pdf
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Emittance Calculations Including RF Cavities
Our beamline includes rf accelerating cavities, and we may wish to perform emittance calculations for 

transport through these cavities.

If we use canonical coordinates in the emittance calculations, we need to know the scalar and vector 
potentials of an rf cavity, which means choosing a gauge.

In the Lorenz gauge (and also in the Coulomb gauges and in the Poincaré gauge) the potentials are 
nonzero outside a closed cavity where the fields E and B are zero.

http://kirkmcd.princeton.edu/examples/cavity.pdf

It may be preferable to use the Hamiltonian gauge (Gibbs, 1896), in which the scalar potential is zero 
everywhere, and the vector potential is (for time dependence e-it and wave number k = /c) 
simply

       This vector potential is zero where E is zero.
http://kirkmcd.princeton.edu/examples/cylindrical.pdf
http://kirkmcd.princeton.edu/examples/EM/gibbs_nature_53_509_96.pdf
http://kirkmcd.princeton.edu/examples/EM/jackson_ajp_70_917_02.pdf
http://kirkmcd.princeton.edu/examples/gibbs.pdf
http://kirkmcd.princeton.edu/examples/gauge.pdf

In the summer of 1987, while simulating transverse emittance in the first BNL rf gun, I found that 
the numerical results were more stable when the vector potential (Hamiltonian gauge) was            
included in the momentum:

http://kirkmcd.princeton.edu/atf/four_cavity_studies.pdf
http://kirkmcd.princeton.edu/atf/vector.pdf

.i
k

 A E


