

Target R&D

Outline

- Introduction
- Solid targets
- Horn R&D
- Liquid targets
- Simulations
- TT2A target experiment

CNGS target mock-up for in beam-tests at TT40 d=5mm, I=10cm carbon rod

Goal

- conversion tool TARGET
 - withstand the power of multi-MW proton machines
 - Target melting
 - Target vaporization
 - Beam-induced pressure waves
 - Radiation damage

Solid targets

Numerous applications today:

but proton beam power < 100 kW

- Basic materials: Beryllium, carbon, tantalum, ...
 - low coefficient of thermal expansion

Studies

- BNL for a 1 MW proton beam (average)
- ISOLDE with a 10kW -"-
- CNGS with a 500kW -"-

— ...

A Carbon Target is Feasible at 1-MW Beam Power

A carbon-carbon composite with near-zero thermal expansion is largely immune to beaminduced pressure waves.

Power Deposited in Target (kW)

Sublimation of carbon believed to be negligible in a helium atmosphere. Tests underway at ORNL to confirm this.

Radiation damage is limiting factor: ≈ 12 weeks at 1 MW.

KIRK T. MCDONALD

MUTAC REVIEW, Apr. 28, 2004

 $\mathbf{5}$

30.July 2004

Velocity-signal of surface-movement for Ta-cylinder with a Laser-vibrometer

Proton beam: 400 GeV/c, every 6 sec spill of 2x 2*10¹³ protons Graphite target d=5mm

- Vibration measurements

 using a laser Doppler-vibrometer
- Demonstration of principle
 - In ISOLDE target area
 - April 2004
 - 2.2 GeV/c, 3*10¹³ p⁺/pulse
 - ΔT_{max} ~ 35 K (CNGS 750 K)

Test at CERN/SPS with nominal CNGS beam in Sept/Oct 200430.July 2004A.Fabich, CERN

Schematic diagram of the

radiation cooled rotating toroidal target

- Distribute the energy deposition over a larger volume
 - Similar a rotating anode of a X-ray tube

٠

Liquid Target with free surface

- jet avoid beam window
- Weissen och of position for datty
- Mercury increased meson yield for high-Z materials, point-like source
- v~20 m/s
- D= 1-2 cm

Replace target at 50 Hz Optimized for re-absorption of mesons

??? What is the impact on the jet by

- 4 MW proton beam
- 20 T solenoidal field

30.July 2004

MOVIE

Low resolution run with dynamic cavitation. Energy deposition is 80 J/g

R.Samulyak et al.

Initial density	Density at 3.5 microseconds							
Initial pressure is 16 Kbar	Pressure at 3.5 microseconds							

Density at 620 microseconds

30.July 2004

A.Fabich,

Previous test series

- BNL&ISOLDE: proton induced shocks
- CERN at GHMFL: MHD
- no observation of combined effects of proton induced shocks and MHD
- one order off nominal parameters

	ISOLDE	GHMFL	BNL	TT2A	NuFact
p+/pulse	3 10 ¹³		0.4 10 ¹³	2.5 10 ¹³	3 10 ¹³
B [T]		20		15	20
Hg target	static	15 m/s jet (d=4mm)	2 m/s jet	20 m/s/ jet	20 m/s jet (d=10mm)
	DONE	DONE	DONE	OPTION	DESIGN

Experiment Site Considerations

- Nufact Study 2 Beam Parameters:
 - 16 TP (10¹² Protons) per bunch
 24 GeV, 1 MW Scenario
 - 32 TP per bunch (x2 rep rate)
 24 GeV, 4 MW Scenario

BNL AGS capabilities
4 TP per bunch E951 experience
6 to 8 TP foreseen (with bunch merging)
No multi-bunch single turn extraction (g-2 rebuild)

CERN PS capabilities

5 TP per bunch normal operation
7 TP multi-bunches foreseen (for CNGS) Exp. area: TT2A
Multi-bunch single turn extraction available
4 bunch flexible fill of PS from booster available

- LOI (Nov03) and proposal (May04) submitted to INTC
 <u>http://cdsweb.cern.ch/search.py?p=intc-2004-016</u>
- perform a proof-of-principle test
 - NOMINAL LIQUID TARGET (not regarding rep. rate)

for a 4 MW proton beam

- in solenoid for secondary particle capture
- single pulse experiment at CERN PS

Collaboration

- Participating Institutes
 - Brookhaven National Laboratory
 - CERN
 - KEK
 - Oak Ridge National Laboratory
 - Princeton University
 - Rutherford Appleton Laboratory

— . . .

Sub-systems

- Solenoid
 - LN2 circuit
 - Power
- Jet chamber
 - Mercury circuit
- Diagnostics
- PS beam

SAFETY BUDGET TIME SCHEDULE

- 15 T with 4.5 MW Pulsed Power
 - 1 second flat top
- 15 cm warm bore
- 1 m long beam pipe

Peter Titus, MIT

Construction started

30.July 2004

Varied parameters

- parameters to vary:
 - Magnetic field (0-15 T)
 - Pulse intensity (1-25 10^{12} p.o.t.)
 - Pulse length (0.5-2 μ s)
 - Spot size
 - Beam position (±5, 1 mm)
- Total number of pulses on target (without tuning): <100
- Needs ~3 weeks of beam time
- Diagnostics:
 - Optical system with high-speed camera
 - Particle detector: interaction efficiency

Optical read-out

- Based on experience from GHMFL
 - Use similar setup
- High-speed camera: >10k frames/s
- Light path
 - Source: laser, a few mW
 - Inserted via glass fiber
 - Optical lens to get large parallel beam
 - Deflected transverse the Hg jet by mirror
 - Second mirror guides light towards camera
- Shadow photography

From GHMFL: we can fit the optical system in this very small space From ISOLDE/BNL: we can record at a distance of at least 15m

OPTICAL READ-OUT is BLIND in case of a perfect jet!

30.July 2004

Cavitation in Liquid targets

- Cavitation was already "observed" at ISOLDE
 - Unfortunately only indirect observation by splash velocity
 - No observation of sec.particle yield
- Does it reduce the secondary particle yield?
 - Most probable not an issue for American design, but for facilities using "long" pulses

PS beam

- momentum p = 26 GeV/c
- 4 bunches within 8 PS buckets at our discretion
- t_{pulse}= 0.5-2 microseconds
- t_{bunch}=50ns full length, peak-to-peak 250 ns
- spot size at target: r<2 mm r.m.s.

Secondary particle yield measurement

- measure interaction efficiency either by
 - Radiation monitors
 - Disappearance of primaries
 - Pick-up monitor downstream of target
 - Appearance of secondaries
 - total particle yield within
 - Partly coverage of solid production angle sufficient
 - Off-axis
 - Detector
 - Simple, e.g. scintillator
 - radiation hard or installed far

Time schedule

			2004		2005				2006				
				2 Q	3Q	4Q	1Q	2Q	3Q 4	Q 1Q	2 Q	3Q	4Q
•	2003		Solenoid			_							
	Autumn		Fabrication Test at MIT]						
	– Autumn	LOI	Test w/Jet										
٠	2004		Ship to CERI Install in TT	N 2a									
	– March	detailed study at CERN											
	 Spring 	solenoid constr. launched	Power Supply Procurement										
	 Spring 	proposal to INTC	Install in TT2	2a									
•	2005												
	 January 	solenoid delivered to MIT	Cryogenics Design/Proce	irement									
	– April	solenoid test finished	Install in TT	2a									
	– June	solenoid shipped to CERN											
	 September 	test at CERN	Hg Jet System										
٠	2006 April	final run at PS start-up	Design/Procu Assembly	ırement]						
	•	•	Stand alone T Test with Sol	[esting]				
			Ship to CERI	N				I					
	Budget:	Budget: ~2.5 M\$	Install in TT	2a									
	Duuyei.		Commisioning										
			Beam on Experi	ment 7									
			Decommisionin	g									

30.July 2004

- Studies on solid targets are ongoing, but these are not suitable for a beam power >1.5 MW
 - Possible approach: rotating target
- Step-by-step R&D on liquid jet targets has been very successful.
- needed proof-of-principle test
 - jet target in a magnetic field exposed to a proton beam