Experimental targetry at CERN

Adrian Fabich

Transformative Hadron Beamlines Workshop BNL, 21.-23. July 2014

Overview

• Test objects: TARGET = OBSTACLE

interacting with the beam resulting in energy deposition: material damage, material vaporisation, thermal management, radiation damage, beam induced pressure waves, thermal shock

- Benchmarking for simulations, material properties
- Prototyping
 - "Thick" targets:
 - Production targets
 - Collimators
 - Accidental exposures of beam elements (e.g. magnets)
 - "Thin" targets
 - Beam measurement detectors and monitors
 - Also off-beam-axis in parasitic mode (e.g. BLMs)
 - Vacuum windows/pipes
 - Collimators (bending crystals)
- Location of target tests? Parasitic or dedicated?

CNGS target

Ad-hoc setup in LHC transfer line (2004)

닅

ENGINEERING

- Laser Doppler-Vibrometer
 - Mechanical deformation of rod

N₂ flushed

CNGS target rod

beam

Dummy target

PT100

12 mm

PT100

MERIT – mercury target test

- Temporary use of nToF primary line
- Required installation of all infrastructure

BNL, Princeton, ORNL, CERN, FNAL, RAL, MIT ...

A. Fabich

HiRadMat

High-Radiation To Materials http://cern.ch/hiradmat

- Dedicated test facility
- Protons 440 GeV, also ions possible
 - In the higher range for production targets
 - With the small focus a higher pulse intensity can be simulated in terms of peak energy deposition.
- Maximum 5*10¹³ protons per pulse
- Tests with single pulses; HiRadMat is not an irradiation facility
 - Limited to ~10¹⁶ protons/year
 - Reduces residual radio-activity for manipulation
- Destructive tests possible as decoupled from accelerator machine/vacuum.

	Protons	Heavy ions (Pb ⁸²⁺)
Beam energy	440 GeV	173 GeV/u
Bunches/pulse (max)	288	52
Pulse intensity (max)	5 10 ¹³	4 10 ⁹
Bunch spacing	25, 50, 75 or 150 ns	100 ns
Pulse length (max)	7.2 μs	5.2 μs
Beam spot	variable around 1 mm ²	
Pulse energy (max)	3.4 MJ	21 kJ

22/7/2014

Layout Experimental Area

3 test stands for experiments
- Remote installation of normed support tables
- Standard connections for general infrastructure

A. Fabich

ENGINE

Ø2/7/2014

Target area

Remote handling

- Equipped with automatic connections
 - Signals
 - Power
 - Water

Facility services

Provision of dedicated irradiation infrastructure

- Preparation lab at surface
 - Same interfaces as in the tunnel
- Control room
- Irradiation position
 - Standardized installation (remote)
 - General supplies (water, electricity, cabling from the control room)
 - Beam monitoring
- Observation tools
 - Camera, LDV, BLMs (diamond)
- Application/logistics/installation at CERN
- Safety Advice

Measurement tools

With the expertise of various groups at CERN

- Laser-Doppler vibrometer
 - Measuring surface velocities of several m/s
 - tens of MHz sampling
- Optical high-speed recording
 - High-speed camera with several kHz frame rate

- Diamond detectors, strain gauges, temperature sensors, microphones ...
- Transverse beam monitoring
 - High precision (< 0.1 mm) alignment to experimental tables
 - Based on pCVD diamond detectors

Beam monitoring

- Beam parameters to be measured at the test object
- Using diamond detectors on beam halo
- Requirements:

22/7/2014

- Online measurement
- Single bunch resolution
- 0.1 mm transverse beam position
 - precision at experiment
- Beam sigma measurement
- Full intensity range (up to 10¹⁴ p⁺/pulse)

Start-up 2011/2012

- 2011: commissioning (project leader I. Efthymiopoulos)
- 2012: first year of operations
 - 9 experiments completed successfully
 - On average every 4 weeks

- 1.4*10¹⁶ pot

2012: only 48 hours of SPS cycling with destination HiRadMat

A. Fabich

Experiments in 2012

- RIB target R&D
- LHC transfer collimator (2x)
- BLM validation
- RP benchmarking
- Crystal collimation

See http://cern.ch/hiradmat for links

Powder target (HRMT10)

RAL C. Densham

Material tests

TPSG4 - 2012

ENGINEERING DEPARTMENT Robustness test of a beam septum protection collimator; 9 m long experimental installation

J. Borburgh, CERN TE

22/7/2014

HRMT16-UA9CRY experiment

Simone Montesano (CERN - EN/STI)

Reporting on the work by many people including: A. Lechner, M. Di Castro, C. Maglioni, A. Perillo Marcone, J. Lendaro, F. Loprete, M. Calviani, G. Smirnov, R. Losito and W. Scandale

A feasibility experiment of a Wpowder target (HRMT-10)

Proposals 2014/2015

- Call for proposals in spring 2014
 - 12 applications
- Beam run 2014/15 allows about 12 beam slots

VEADS / ANS CEE

HiRadMat receives support from the EU FP7 grant ^AEtreARD2 within the activity "Transnational Access".

Collimators

A. Bertarelli CERN MME S. Redaelli CERN ABP et al.

Molybdenum, 72 & 144 bunches

Molybdenum-Copper-Diamond 144 bunches

A. Fabich

Glidcop, 72 bunches (2 x)

SLAC

Beryllium specimen

P. Hurh (FNAL), C. Densham (RAL) et al.

Multiple samples exploiting long interaction length in beryllium. Samples include:

- Different commercial grades of Be
- Thick & thin windows

pbar target

- Pulse intensity ~1-5*10¹² p/pulse
- Spot size: $1x1 \text{ mm}^2 \rightarrow 1.5x1.5 \text{ mm}^2$

- Total number of medium-high intensity pulses: ~300-400
 - Ramp-up approach
 - Other ~200 low intensity pulses could be anticipated
- Integral intensity ~2*10¹⁵ POT
- Beam alignment/stability:
 - Maximum shift pulse-by-pulse ~100 μm
 - Important to have it guaranteed, not only monitor
 - Monitor beam asymmetry ~100 μm

Secondary beamlines

- In East (T7, T9, T10) and North Area (H2, H4, H6 ...)
- E.g. HARP in East Area

• See also FNAL sec. beamlines by Erik

A. Fabich

Summary

• HiRadMat is a dedicated in-beam test facility for single-pulse experiments.

Avoiding parasitic beam time and operation conflicts

- Such a test facility is useful for a large variety of beam obstacles.
- Dedicated CERN irradiation facilities exist as well.

