A. Fabich, CERN

MERIT collaboration meeting, CERN, 7-8 February 2008

MERIT BEAM INTENSITIES

Contents

Aim:

- Single bunch intensities
- Relative precision of a few percent
 - Must be better than the aimed precision for detecting production deficiencies due to cavitation.
- Beam intensity monitors
- Data synchronization
- MERIT BCT data and analysis
- PS transformer data
- Self-contained analysis and comparison of different systems

Beam intensity monitors

1. BSM

- Bunch shape measurements in the PS ring
- On last turn before extraction
- Single bunch intensities available
- Not always recorded, data stored graphically

2. BeamCurrentTransformers (PSCT) on TT2

- Pulse intensities measured, no single bunch intensities
- "wrongly" measured intensities for pulses in pump-probe method beyond a certain delay
- Automatic logging (data electronically available)

3. MERIT BCT on TT2A (MCT)

- About 10 meter upstream of z=0
- Single bunch intensities available
- 500 MHz (2 ns) sampling rate
- Attenuation factor was increased x2, once on 26.Oct 2008 at 16:03 (BCT time)
- Automatic logging (data electronically available)

The crux of the matter is in the details

which takes a long time to analyse

_ _ _

Step 1 – Synchronize data

Sources with different data management and timing systems

Ilias prepared a file with all major parameters combined with beam run numbers.

- MERIT logbook and beam run numbers
- PS logging system (PSCTs, B-fields ...)
 - UTC time (2 hour off, 1 hour off after 28th Oct. 2007) compared to CERN time GMT+1)
- MERIT BCT, stand-alone server (with different day-light adjustments than usual)
- Mercury system
- Particle detector systems

For the case of beam intensities:

- Satisfactory!
- Minor discrepancy, where the discrepancy has other origins than timing synchronization.

A typical MCT recording

PS in different harmonic modes

Single pulse response

All single h16-bunches

- normalized to unity.
- Time shifted

Left: start of MCT response

Center: ringing up to "next" bunch

Right: Numerical integral

Analysis - step by step

- Any beam taken (in fact 2007-10-31,10:00:52 transformer time)
 - harmonic 16
 - 16 bunches
 - NO pump-probe; extraction within one turn

Reconstruct with single pulse response

(single pulse from 2007-10-29 16:20:51)

The intensity integral

Comparison PSCT - MCT

- Right:
 - red and green = PSCT (scaled)
 - Black: ratio MCT/OSCT
- Left: Histogram of black data from right
 - Peak at 1 is reasonable
 - Some strange peaks and flat distributions
 - Peak at 0.25 and 0.5 from "wrong" measurements by PSCT in pump-probe

BSM data

Right: BSM

File General Scope1 Scope2 Scope3 Help

PEX.ONAOS-TS

MX.C-TRAIN PAX.RF-TRAIN

Sy Sy Pls
Sy Sy Pls
Sy P

CPS:MDPS (26)

BSM summary

 Pulse total from single bunch recordings of BSM and MCT are compared.

Poor statistics from BSM (to be verified).

Summary

- Analyzed about 500 beam measurements
- Revisit intensity from PSCT for "strange" cases
- Codes (mathematica) available for automated analysis available
- Summary sheet of all single bunch intensities available
 - Need to add flag of good/bad beams
 - If "bad" beam run is needed, has to be evaluated case-by-case.
- Re-evaluate BSM data