

CERN infrastructure

A.Fabich, CERN AB-ATB

All information available at http://cern.ch/proj-hiptarget

Experimental requirements

What CERN could provide?

- Primarily a technical review
- Cost/ estimates exist, but no official CERN management confirmation of availability and support
- Space
- ▶ Beam
- Support on
 - installation
 - Cryogenics
 - solenoid power
 - Safety

CERN accelerator chain

► TT2 – transfer tunnel from Proton Synchrotron to AD, SPS

▶ TT2A – PS transfer line to nToF

(not to scale) LHC SPS ALICE **ATLAS** LHC: Large Hadron Collider SPS: Super Proton Synchrotron AD: Antiproton Decelerator ISOLDE: Isotope Separator OnLine DEvice Gran Sasso (I) PSB: Proton Synchrotron Booster PS: Proton Synchrotron LINAC: LINear ACcelerator

LEIR: Low Energy Ion Ring

CNGS: Cern Neutrinos to Gran Sasso

CERN Accelerators

Periphery

Control room

nToF

Access & transport

TT2A

- Pedestrian access via TT2
- ► Material access shaft in TT2
- ► Tight turn from TT2 to TT2A

proton beam from PS

Cryogenics

- Dewar at surface
- Supply and exhaust via 60 m long piping
- Reuse of existing equipment
- Details in RAL contribution

16.Feb.2005

MC meeting

Access route for LN2 delivery

Power supply for solenoid

Type Alice/LHCb

2. West Area power supply

New - Used by LHC exp.

From dismantling West Area - Refurbishment needed

Power supply for solenoid

	Alice/LHCb	WA PS	required
Voltage [V]	< 900	< 1000	740
Current [A]	< 7200	< 8000	7200
costs	~300 kChF	~ 100 kChF	~ 0 kChF

► Further use in US or Japan considered

Power net:

- ▶ 18 kV cells in building 193
- Cable installation ~70 kChF
- Currently investigating impact on power net (spikes)

PS beam

- ► Momentum: < 24 GeV/c
- ▶ 8 buckets to fill (h=8)
 - $T = 2 \mu s$
 - spacing: 250 ns
- 4 bunches (within one sub-cycle)
 - \blacksquare I = 13 ns r.m.s.
 - to our discretion in the 8 buckets
 - Multi-bunch single turn extraction
- Pulse length: 0.25 2 μs
- Intensity:
 - < 0.7*10¹³ protons/bunch
 - Total < 3*10¹³ p.o.t./extraction

Beam at experiment

- Beam horizontal
 - According to geometer: Δh=5mm over 100m
 - Beam height: 121 cm above ground
- ► Floor horizontal
- >Spot:
 - r < 2 mm</p>

Safety

- Radiation
- Mechanical safety
- Mercury
- ► LN2 cooling
- ► High magnetic field
- **>** ...
- "Waste" management

Procedure established:

- Define requirements/specs
- Prepare layout/design
- Safety review

SAFETY CONTACT F	PERSON FOR ALL		
MATTERS: Herve Buret Tel.: 160013 (replacement since Oct.2004, former Bruno PICHLER tel: 16 0889 or 73362			
	Responsible		
DSO of AB	Paolo CENNINI		
General Safety	Bruno PICHLER		
Radiation	Thomas OTTO		
Gas and Chemicals	Jonathan GULLEY		
Electricity			
Emergency stops			
Magnetic Field	Fritz SZONCSO		
Laser			
Fire	Fabio CORSANEGO		
Material	(material also J.Gulley)		
Mechanical safety	Alberto DESIRELLI		
	also Maurizio BONA		
Cryogenics	Gunnar LINDELL		

Radio-Protection

- Activation
 - Beam line
 - Mercury
- High intensity proton beam towards nToF target
 - beam attenuator
- Access
 - protected by
 - ► Two beam stoppers
 - ▶ Upgraded shielding during shutdown 2003/2004
 - ► Radiation monitor in TT2A

Safety

Mercury loop

- Construction at ORNL
- 6 to 8 Liter mercury
- Experience
 - at ORNL and CERN
- Double containment
- ► ISO 2919 "sealed sources"

Radiation

- ALARA
- Minimum number of integrated protons
 - < 3 10¹⁵ (~100 pulses)
- Activation of area and mercury

Chemicals

- Minimum amount of mercury
- Continuous vapor monitoring
 - Inside secondary containment
- Define procedures/operation

Safety

Mechanical safety

- According to CODAP2000/ASME
- Double containment
- Pressure vessel

Cryogenics

- Standards used
- ODH study

- ▶ Beam attenuator
 - to protect nToF target
- controls, interlocks
- decommissioning
- Waste management

Decommissioning

- removal of all equipment
 - Approx. 2 weeks to restore beam line
- > "Waste" management
 - Activated mercury
 - Solenoid
 - Power supply
 - Mercury loop

-

returned to ORNL
shipped to Japan
considered for further use
goes with solenoid
reused in Japan/US?

Summary

- Integration of experiment technically possible!
 - No safety obstacles

► DG approval needed ...