MERCURY JET TARGET RESEARCH AND DEVELOPMENT FOR AGS E-951

C. C. Finfrock and G. A. Greene

Muon Collider Collaboration Meeting

Brookhaven National Laboratory

February 2, 2001

Mercury Target Requirements

- Generate a one-centimeter diameter arcing horizontal jet of mercury to provide a 10 to 15-centimeter interaction length with the proton beam.
- Provide an unobstructed view of the interaction zone for high speed imaging.
- Operate simply, reliably and remotely.
- Safely contain projectiles which may be generated by mercury-beam interactions.
- Manage mercury vapor generation.
- Mounting system to provide for easy interchange of other test targets.
- Materials of construction must be compatible with mercury and survive a radiation environment.

Main Features of Pneumatic Mercury Jet Apparatus

• Mercury jet containments:

- Dual containment assembly for mercury containment
- External fiducial registration for quick installation and replacement
- Constructed of commercially available components wherever possible

• Primary containment:

- Constructed out of commercial vacuum components
- May be inerted, vented to atmosphere through mercury traps
- Pressure relief and liquid level sensors on mercury reservoirs
- Remote pneumatic operation, no active electrical components
- Interior is mercury wetted, all materials mercury compatible
- Can be isolated and pressurized for leak testing
- Beam windows are Inconel 718 and/or Havar

Main Features of Pneumatic Mercury Jet Apparatus

- Secondary containment:
 - Commercially fabricated out of welded stainless steel
 - Air atmosphere, always vented to atmosphere through mercury traps
 - No active electrical components
 - Interior is not mercury wetted, but all components are mercury compatible
 - Interior can be manually sniffed for mercury
 - View ports are quartz, Lexan or ballistic glass
 - Approximate size: 20" wide x 20" high x 36" long

Main Features of Pneumatic Mercury Jet Apparatus

• Mode of operation:

- Pneumatic operation and control to provide a 5-second duration mercury jet
- Two-dimensional positioning table is remotely controlled
- Remote operation of jet apparatus by computer control
- Minimize beam line entry requirements and radiation exposure
- Mercury sniffer on hand during operation
- Visual detection of mercury in secondary containment
- All components are mercury compatible
- Radiation resistant materials such as poly-ether-etherketone valve seats, ethylene-propylene O-rings and Viton or copper flange gaskets are used
- Can reset for next test remotely in minutes

Materials Considerations

Containments:

- Commercially available stainless steel components for inner containment
- Welded stainless steel sheet for outer containment
- Inconel-718/Havar alloy external beam windows
- Quartz, Lexan or ballistic glass internal view ports
- Quartz, Lexan or ballistic glass external view ports

Valves:

- Stainless steel bodies
- Poly-ether-ether-ketone seats
- Ethylene-propylene or "grafoil" flange seals
- Non-fluorocarbon actuators
- Pressure ratings in excess of 1000 psig

Mercury Jet Internal Confinement, Integral Reservoir Design

Brookhaven Science Associates U.S. Department of Energy

Looking Into The Secondary Confinement From Above

Brookhaven Science Associates U.S. Department of Energy

Pneumatic Control System for Mercury Jet

Brookhaven Science Associates U.S. Department of Energy

Current Status

- Preliminary tests with water jets are complete.
- Mercury jet target designs are substantially complete, final detailing still underway.
- Test stand is installed in the beam line.
- Materials procurement underway.

