

Horn R&D

S. Gilardoni

Speaker A. Fabich CERN – AB

For the CERN Horn working group S. Gilardoni*, G. Grawer, G. Maire, J.-M. Maugain, S. Rangod, R. Wilfinger, F. Voelker

* Dottore

Nufact04

S.Gilardoni (A. Fabich)

- New simulation of particle production and tracking (LAL)
 - comparison FLUKA vs MARS
 - calculation of energy deposition in conductors
- Mechanical tests
 - determination of mechanical eigenfrequencies
- Electrical tests of power supply
 - determination of weak point in the present design
- Life time review
 - Verification of the life-time limit
 - six weeks as minimum requirement

J.E. Campagne, A. Cazes

- Target simulation (FLUKA)
- Horn simulation (Geant 3.2.1)
 - CERN design tested, optimization under study.
 - tracking through magnetic fields and materials
 - Energy deposition computed
- Decay tunnel
 - different geometry tested:
 - length = 10m, 20m and 40m ; R = 1m and 1.5m
 - decay simulation
 - using probability method
 - including kaon decays
- Fluxes computed at Fréjus for the SuperBeam

Comparison MARS - FLUKA

SPL energy optimisation

Horn design optimized for 600MeV π

Proton kinetic energy: 2.2GeV,
4.5GeV and 8GeV
θ₁₃ sensitivity computed thanks to Mauro Mezzetto's code.

5 years running π^+

Nufact04

S.Gilardoni (A. Fabich)

Laser vibrometer measurements:

- displacements via phase difference
- velocity via Doppler shift
 Nufact04

Laser Vibrometer	OFV-3001-22/303
Laser Type	He-Ne
Laser Class	2
Light wavelength	632.8 nm
Power	$1 \mathrm{mW}$
Frequency range	1 Hz - 1.5 MHz
Min. displacement	1 nm

S.Gilardoni (A. Fabich)

Validation of the method: CNGS horn

CNGS horn: two 150 kA pulses separated by 50 ms and repeated every 6s

Ref. Frequency: ~ 130 Hz

Spectrum 150 kA front point b2

Nufact04

Nufact04

S.Gilardoni (A. Fabich)

Results:

- 1. freq.s found with acoustic method confirmed
- 2. new frequency found...
 but ...
 Nufact04
 S.Gilardor

Mode	Acoustic freq. (Hz)	Laser freq. (Hz)			
1	193.7	206			
2	549.1	581			
3	-	2470			
Costs	~ 3 \$ US	~ 3000 \$ US			
i (A. Fabi	ich)	- Osaka			

Advantages of the laser

Nufact04

S.Gilardoni (A. Fabich)

Vibration reduction by water

With water cooling

Horn cooling scheme

Neck Measurements

Hz

200

325

575

1330

2460

4410

6690

7030

8200

8640

8990

9860

Frequency Spectrum Hz 1.00E+00 Mode Frequency 1000 2000 3000 5000 6000 7000 8000 10000 4000 9000 А 1.00E-01 Spectrum Velocity (m/s) Point Z В Spectrum Velocity (m/s) Point Y 1.00E-02 С A.U. D 1.00E-03 Е E 1.00E-04 F J 1.00E-05 Κ 1.00E-06 L 1.00E-07 М Ν \mathbf{O}

Radial vibration of the inner conductor measured through the magnetic probe without water cooling

Nufact04

S.Gilardoni (A. Fabich)

Power supply last prototype: 100 kA – 0.5 Hz

- Ch1: Current of unit one measured with current transformer. (10kA/div)
- Ch2: Current of unit two measured with current transformer. (10kA/div)
- M1: Voltage across thyristor. (1kV/div)
- M2: Sum of both currents. (25kA/div)

Nufact04

S.Gilardoni (A. Fabich)

 AA 6082-T6 / (AIMgSi1) is an acceptable compromise between the 4 main characteristics:

Not compatible with Mercury

Nufact04

S.Gilardoni (A. Fabich)

- Verify the reliability of a 300kA-50Hz horn built according the conventional technique of pulsed horns and providing a minimum lifetime of a minimum of six weeks and a maximum up to one year.
- Best solution: take the horn, power it at the final freq. and current until breaking under irradiation... but of course this is not possible....
 - Verify the construction technique chosen
 - good experience from CNGS
 - Verify the mechanical characteristics of the material
 - Check the limit reached by the Miniboone horn

Nufact04

S.Gilardoni (A. Fabich)

Material lifetime extrapolation

NuFact – CNGS horn

Miniboone horn

AD horn

Al 6082-T6									
%	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Al
Min	0.7	0.0	0.0	0.4	0.6	0.0	0.0	0.0	Bal
Max	1.3	0.5	0.1	1.0	1.2	0.25	0.2	0.1	Bal
Al 6061-T6									
%	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Al
Min	0.4	0.0	0.04	0.0	0.8	0.04	0.0	0.0	Bal
Max	0.8	0.7	0.15	0.15	1.2	0.35	0.25	0.15	Bal
Al 7075-T6									
	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Al
%	0.40	0.50	1.60	0.30	2.50	0.23	5.60	-	Bal

- The first prototype has been tested with the last upgrade of the prototype power supply
 - power supply failures identified and due to the reuse of old refurbished electric elements to reduce the costs
- The life time of the horn has been estimated between a minimum of 6 weeks and a maximum of one year
- The measurements of the mechanical vibration frequencies show a non-resonant behaviour for pulses repeated at 50 Hz
- Comparison FLUKA-MARS
 - good agreement for the "useful pions"